This Area of Concentration relies on the same 4 Required Core Courses as the standard MS in Biotechnology degree. Additionally, you will complete 4 Area of Concentration Courses and 2 Elective Courses.

Area of Concentration Courses

Complete these 4 courses to qualify for this Area of Concentration:

In this course, students learn about how gene therapy can be used to treat or prevent genetic disease in the human population. This course is centered around how disease-causing variations in the human genome, including inherited diseases, mutations, epigenetic modifications, and viral infections, can be targeted using molecular technologies. Students will learn about the benefits and limitations of gene therapy and the bioethical concerns involved with this field of research and medicine. Prerequisites: 410.601 Biochemistry or equivalent, 410.602 Molecular Biology or equivalent, 410.603 Advanced Cell Biology or equivalent. SCI

Regenerative Medicine is a multidisciplinary field developing next-generation therapies that aim to augment, repair, replace or regenerate tissues and organs. This field can be broadly defined by three overlapping technology domains: cell therapy, gene therapy, and tissue engineering. In this course, we will explore these regenerative medicines from bench to bedside. We will discuss relevant biological, engineering, clinical, legal, regulatory, and ethical principles and perspectives to understand the emerging field of regenerative medicine. Specific topics will include induced pluripotent stem cells, bioartificial organs, cell-based immunotherapy, and gene editing techniques such as a CRISPR/Cas-9. In addition to gaining a scientific foundation, students will become familiar with the current state of the industry and the process of bringing these regenerative medicine products to market, including market trends and opportunities, process development and manufacturing, and commercialization challenges and successes. Readings will be drawn primarily from scientific journals. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I. SCI

This course will involve discussion and debate on current topics concerning stem cell biology and the use of stem cells in biotechnology and therapeutics. Topics will include review and discussion of developmental and cell biology, stem cell characteristics, stem cell preparation and therapeutic uses, tissue engineering, global regulatory and ethical issues, and commercialization of stem cell therapy. The course will also detail state-of-the-art techniques for the experimental study of stem cells for biotechnology and biomedical applications. Current peer-reviewed literature and guest experts in the field will provide up-to-date information for discussion. Prerequisites: 410.601 Biochemistry or equivalent; 410.602 Molecular Biology or equivalent; 410.603 Advanced Cell Biology or equivalent; 410.604 Cellular Signal Transduction. SCI

This laboratory course introduces students to the isolation, cultivation, and differentiation of stem cells. Students are introduced to reprogramming and differentiation protocols for various stem cell and cell progenitor types and the basics of tissue engineering. Students will scale up cells into mini-bioreactors for large-scale use. The class will include industry-wide practices in cGMP. Prerequisites: 410.601 Biochemistry or equivalent; 410.602 Molecular Biology or equivalent; 410.603 Advanced Cell Biology or equivalent; 410.604 Cellular Signal Transduction or equivalent; 410.652 Cell Culture Techniques or permission of programming committee. SCI

Elective Courses – Biotechnology

Select two electives from the list of more than 100 general biotechnology electives and science elective courses. Be aware that the electives you are considering may include important prerequisites.

STATE-SPECIFIC INFORMATION FOR ONLINE PROGRAMS

Students should be aware of state-specific information for online programs. For more information, please contact an admissions representative.

Audience Menu