The Center for Biotechnology Education encourages shared-learning opportunities across multiple disciplines within its set of degree and certificate programs. Explore the programs within the Biotechnology Field of Study.

This page gathers the general elective courses available to programs within the Center for Biotechnology Education. Some programs also have requirements related to science and laboratory elective courses.

Elective Courses

This course covers cell organization and subcellular structure. Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors, as well as the mechanics of cell division, sites of macromolecular synthesis and processing, transport across cell membranes, cell dynamics, organelle biogenesis, and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation.

This course is a continuation of 410.603 Advanced Cell Biology and further explores cell organization and subcellular structure. Students examine cell-to-cell signaling that involves hormones and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA, modification of chromatin structure, and mechanisms of the cell. The roles that defects in signal transduction pathways play in the development of cancer and other disease states will be stressed. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I.

This course focuses on the knowledge, skills, and attitudes that enable entrepreneurs to pursue opportunities in life sciences. Students form teams to experience each step of the entrepreneurial process. The end result is an opportunity assessment of a business idea and the opportunity to pitch the opportunity to an active Venture Capital firm. Emphasis is placed on a hands-on approach with learning supplemented by cases appropriate to each phase of the course. Entrepreneurs and subject experts provide students with an experiential and in-depth examination of the challenges involved in identifying and assessing an opportunity for an entrepreneurial venture, whether in business-to-business or business-to-consumer settings. By entrepreneurial, we refer to those ventures that are high risk/high reward, capital intensive, scalable, and attractive targets for at-risk capital investment. The course’s focus is specific to Life Sciences, including biotherapeutics, medical devices, diagnostics, health care information technology (HCIT) and digital health.

The Biotechnology Proseminar introduces students to issues and challenges facing leaders of public and private-sector organizations as well as t0 communities seeking to achieve shared goals within the biotechnology industry. The course brings together diverse academic, science, and business disciplines (science, regulatory affairs, marketing, finance, legal, ethics, communications, etc.). It explores how these disciplines can be used as powerful tools to create effective leadership and productive collaborations within the industry while improving managerial decision-making.

This course provides an extensive overview of a process for the development of a pharmaceutical by a biotechnology company or pharmaceutical company. The course emphasizes the importance of intellectual property, the basic sciences underpinning the development of a product, and the importance of the interaction between a company and the Food and Drug Administration. Students learn to appreciate the importance of quality control and assurance, good manufacturing practices, preclinical and clinical testing, and the lengthy regulatory processes that govern the development, manufacturing, and eventual sale of biotechnological products. Hands-on solving of practical problems and guest lecturers who are experts in the field familiarize students with the intricacies of the process. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology I or admission to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs.

Students in this course analyze and discuss traditional philosophical theories regarding the nature of the moral good. They then apply these theories to critical issues and selected cases involving experiments with human subjects, organ transplantation, in vitro fertilization, the use of animals in research, the collection and publication of research data, peer review, conflicts of interest, and other topics of current concern.

Governments around the world are beginning a long-term process that reviews and redesigns its health care systems addressing concerns of innovation, cost, equitable access, and sustained quality of health care. As a result, health care is undergoing significant changes globally in R&D, marketing, pricing, sales, and distribution. This course helps students to understand these processes and the new business opportunities and new business models they will create. It provides some of the basics of macro and microeconomics to clarify how economic and social forces drive changes in the pharmaceutical, biotech, and genetic industry. Emphasis will be placed on the application of economics.

The roles of managers and leaders within biotechnology companies undergo constant change. Biotechnology managers and leaders must engage in new and innovative problem-solving strategies, lead a diverse and global workforce, develop partnerships with other businesses, customers, and competitors, manage horizontally and across teams, and utilize technology to a competitive advantage. The student is able to address and cure challenges in his/her own organization and learn methods of implementing change, such as negotiation techniques and motivation. The course includes in-depth discussions of leadership skills, communication, conflict resolution, and goal integration. Students research a biotechnology organization, analyze what is working and not working within its management systems, and suggest alternatives.

This course introduces students to the strategic and tactical approaches used in the marketing of biotechnological produce and services. Students gain a thorough understanding of the research and planning necessary to develop a marketing plan, the relationship between the marketing and sales functions, the difference between marketing a scientific product and a scientific service, pricing strategies, distribution alternatives, communications, promotion, and the importance of perception. Knowledge of marketing terminology and techniques proves helpful to anyone in the industry.

This course provides a foundation to start or help guide a young biotechnology company from inception through early growth. Topics include market assessment of innovative technology, patents and licensing, corporate law, preparing a business plan, raising money from angels and venture capitalists, government grants, strategic alliances, sales and marketing, real estate, human resources, and regulatory affairs. The course provides a survey and overview of the key tasks and challenges typically faced by biotech entrepreneurs, their management team, and directors. Students will prepare a business plan for a biotech startup and present the plan to a panel of industry experts and financiers. Leaders from our local bioscience community will be guest lecturers for many of the classes.

This course covers the basic ethical notions in the conduct of biomedical research with animals and human subjects that make up the core values of scientific integrity. Students explore issues central to these areas, such as the appropriate use of animals in research, informed consent for human subjects, authorship, peer review, and the ethics of the business of science.

Regulatory affairs are comprised of the rules and regulations that govern product development and post-approval marketing. In the U.S., the FDA establishes and oversees the applicable regulations under several statutes, many regulations, and partnerships with legislators, patients, and customers. Biotechnology products may be classified as drugs, biologics, or medical devices. Each type is regulated by a different center within the FDA. This course provides an overview of RA and its effect on product development. Topics include RA history, regulatory agencies, how to access regulatory information, drug submissions, biologics submissions, medical device submissions, GLP, GCP, GMP, and FDA inspections.

This course is a survey of legal topics relevant to a biotech enterprise as it is established, conducts research, and brings innovative products to market. These include property, contracts, regulatory compliance, and patents. Students will be able to analyze common business situations and understand how associated legal risks are managed. Students who have taken 410.687 Ethical, Legal and Regulatory Aspects of the Biotechnology Enterprise will also benefit from this course, as they will analyze contracts, patents, and various statutes and court decisions that impact the biotechnology sector.

Researchers must communicate effectively so their discoveries can be shared with others. In this course, students learn how to communicate their ideas to other researchers, their scientific peers, and investment communities. Students master both written and verbal communication skills, hone their expertise at making both formal and informal oral presentations, prepare poster presentations, and develop their own public speaking strategies. The course also presents personal strategies for improving daily communications, cross-cultural communications, and nonverbal skills. Students improve their written communication, editing, and informal writing skills. Participants also learn effective email strategies for getting their message across and learn how effective writing can improve their chances of getting grant applications approved. Class assignments include preparation of scientific papers, general science writing, oral presentations, PowerPoint presentations, and scientific posters.

Pharmaceutical/biotechnology product approval and marketing requires a good understanding of international regulatory affairs in order to successfully compete in today’s global marketplace. It is important for tomorrow’s leaders to understand and follow the regulatory differences to ensure optimum product development strategies, regulatory approvals, and designs for exports conforming to the foreign regulatory bodies. There are various product development strategies that industry is using to shorten the product development time by conducting preclinical programs outside the U.S., but the strategies require careful planning and interaction with the U.S. and foreign regulatory agencies. With the increased globalization of economy and exports, international regulations will have a bigger impact on the biotechnology business in the future. The course provides a review and analysis of the pharmaceutical/biotechnology product approval processes within the world’s major markets. The key strategies required in phases from preclinical product development to marketing approval of the products in Europe, Japan, and the U.S. will be compared and discussed. Students will explore the European Union regulations and their overall importance to international markets. The course will cover the salient features of common technical and regulatory documents required for submission and approval to the leading regulatory bodies in the world, general guidance documents, international harmonization, and the General Agreement on Tariffs and Trade.

The Food, Drug, and Cosmetic Act governs the regulatory approval process for bringing a drug, biologic, medical device, food, or cosmetic to market. The class will discuss administrative procedures followed by the FDA. The course includes an overview of the drug, biologic, and medical device approval processes and the regulation of food and dietary supplements. Students then will be exposed to the enforcement activities of the FDA, including searches, seizure actions, injunctions, criminal prosecutions, and civil penalties authorized under the FD&C Act as well as other statutes, like the Public Health Service Act, which regulates the development and approval of biologics.

This integrative, case-based course will focus on applying knowledge gained from previous courses in the Master of Science in Regulatory Science program to actual cases from the FDA. For each case, students will assume the role of a regulatory specialist, an FDA reviewer or senior-level policy-maker, or other involved stakeholders, such as a consumer group or an advocacy group. Students will be expected to research, evaluate, and present scientifically and legally justifiable positions on case studies from the perspective of their assigned roles. Students will present their perspectives to the class and be asked to debate the issues with the other students from the perspective of their assigned roles. The major responsibility of the students in this course will be to make scientifically and legally defensible recommendations and to justify them through oral and written communication.

Students will build an understanding of the basics of contemporary global monetary systems and the essentials of financial management. This course will include the means to develop a working knowledge of the critical financial factors for decision-makers from the perspectives of key stakeholders. The syllabus is designed to provide students with limited or no background in finance an opportunity to establish an understanding of financial basics and communicate clearly in financial terms when conducting business. This course is uniquely designed to meet the current needs of those leading the global life science industry.

Understanding validation and applying a comprehensive validation philosophy are essential in today’s biotechnology industry. First and foremost, validation allows a company to operate in compliance with the regulations and guidance set forth by the FDA. Perhaps more importantly, it results in equipment assays and processes that are well-understood and robust, less prone to failure, and more cost-effective. This course will introduce the fundamentals of validation, validation master planning, resource management, types of validation and the associated documentation, departmental roles and interactions, and the differences between commissioning and validation. Students will have the opportunity to solve real-world problems, generate actual validation documents, and develop validation program elements that balance regulatory requirements, operational needs, and business expectations.

Current Good Manufacturing Practice regulations are the minimum standards for the design, production, and distribution of drugs, biologics, and medical devices in the U.S. and internationally. In the U.S., they are codified at the federal level in the FD&C Act and the Code of Federal Regulations and are actively enforced by the FDA. These regulations, however, only begin to describe the practices used in the pharmaceutic and biotech industries. Additional sources of insight and guidance include the FDA’s guidance documents and training manuals, industry trade publications, international compendia, and standards-setting organizations. Students will learn the scope and history of the regulations, industry-standard implementation strategies and “best-practices” approaches, and the FDA’s current expectations. Students will also learn to apply practical solutions to the regulatory issues faced in the pharmaceutical and biotech industries today.

This course is an introduction to the multidisciplinary aspect involved in the process of translating innovations in technology into commercial use, particularly research discoveries emanating from universities and other nonprofit organizations.

Biotechnology impacts the world and our social, political, and physical environment in ways that many both inside and outside the industry may not fully understand or appreciate. It is critical to ensure that advances in biotechnology be accompanied by important public, political, and social considerations and discussions. This course will cover issues including domestic and global public perception of biotechnology, its benefits and risks, advances in bio-agriculture and genetically modified food, the impact of recombinant therapeutics on the pharmaceutic and health care industry, ways in which advances in biotechnology have and will continue to change our views of what life is, and how the political climate impacts advances in biotechnology discoveries. This highly interactive course will include thought-provoking debate and discussion with industry leaders, both proponents and opponents of biotechnology.

Good Food Production Practices are production and farm level approaches to ensure the safety of food for human consumption. Good food production and post-harvest guidelines are designed to reduce the risk of foodborne disease contamination. These good food production procedures can be tailored to any production system and are directed toward the primary sources of contamination: soil, water, hands, and surfaces. Good food production protocols were developed in response to the increase in the number of outbreaks of foodborne diseases resulting from contaminated food. Students will learn to develop good food production regulatory protocols using case studies.

This course provides an overview of the important ethical, legal, and regulatory issues that are critical to the biotechnology industry. The course shares current trends and essential elements of ethics, legal issues, and regulations in a way that allows for an appreciation of how each influences the others. Students will examine core ethical values that guide the practice of science in the biotechnology industry. The course will provide an overview of legal issues, such as protecting inventions, intellectual property, licensing, and the range of regulatory oversight mechanisms with which the biotech industry must comply. This course will review the implications of strategic ethical, legal, and regulatory choices that add value to the biotechnology firm, customers, and society.

Today, many organizations use the approach called project management to handle activities that have a limited life span as opposed to routine, ongoing operations. This course will answer the question, “What do I do to be successful?” The units will provide guidance for project management success by considering each phase in the life of a typical project, from concept to closeout. We will discuss the nature of project management, the structure of projects, working with teams of technical experts, and all the other activities that make project management different from any other discipline. The course will rely heavily on group discussions. Topics will include deciding making decisions, developing a project plan, risk management, team leadership, monitoring and controlling during the project, scope change control, and traditional and modern approaches to project closeout. Concepts presented will be consistent with the Project Management Institute’s “Guide to the Project Management Body of Knowledge,” the U.S. standard for project management.

As bioscience companies grow and mature, leadership needs to evolve. Students will learn how to identify their company’s position in the “Leadership Life Cycle” and learn how to select the right leadership capabilities based on their current organizational needs. Research shows that the right leaders at the right time dramatically improve organizational success. Discussions will address the leadership needs of organizations from early-stage, research-based companies through fully integrated biopharmaceuticals. General leadership practices and strategies, moving ideas from the research bench to the consumer, and strategies to prevent failure will all be discussed.

This course is designed to help students understand the legal and regulatory complexities of the regulation of food products in the United States. The prone issues, including regulatory compliance in food safety and Hazard Analysis and Critical Control points (HACCP), are among major issues to control the food-supply. The FDA and the U.S. Department of Agriculture (USDA) have primary responsibility for the safety of meat and food products. Based on the principles of HACCP, FDA-issued seafood regulations went into effect in December of 1997. However, the regulation of food additives, labeling, dietary supplements, genetic modifications, and the protection of the food supply account for the majority of the in-depth food regulation in the United States. The FDA and USDA regulate the safe practice of primary and secondary food products to the American public. Depending upon the source and nature of food product, the method of shipment, advertisement of nutritional values, etc., are being governed by FDA and USDA jurisdictions. The Food Safety Modernization Act overhauls the FDA in food surveillance, enforcing regulations on specific targets, inspection records examination, and exemptions. In this course, students will learn the existing food regulations and safety net by examining the product tracing, performance standards, and preventive control plans toward food safety, security, genetic modifications, dietary supplements, and food labeling. Students will have the option to design projects to propose an effective food safety net that can assist in the supply chain of the nation’s food safety and security.

Software continually grows more complex and is becoming relied upon by health care professionals in the treatment of patients. This course describes how the U.S. government regulates software used in delivering health care, including the regulations utilized by the FDA and the Centers for Medicare and Medicaid Services. This course covers a wide range of topics, including FDA regulation of software as a medical device and software validation, medical imaging software regulation, electronic record keeping and software used in clinical trials, laboratory information management systems, and HIPAA privacy rules and security standards.

This course is an overview of the strategic planning process of a biotechnology enterprise. It focuses on creating value through strategy formulation and implementation. Topics covered include leadership and technology competencies, performance indicators, intellectual property, corporate governance, regulatory strategy, and appropriating value. The thesis of the course is that effective strategic planning and implementation is critical to success and provides a valuable, structured process for creating enterprise value and managing business risks. Best practices in strategic planning and managing the planning process are also discussed.

This course will explore how biotechnology innovators are solving social issues, including developing medical diagnostics, discovering effective and safer medicine, producing cleaner energy, remediating environmental contamination, and improving crop yields. Students will think broadly in terms of roles required in tackling these social, economic, health, and environmental issues, and how they can add value to society.

This course will cover social entrepreneurship principles and practices in a range of sectors, including corporate social responsibility and public value missions in emerging markets. Students will have opportunities to define their role in advancing biotechnology as it relates to the top global challenges.

Medical products brought to market need to have a sound payment, coding, and coverage strategy.  Medicare covers over 100 million Americans and it leads the way in all United States insurance policies.  This course will provide insight into how medical product reimbursement works and allow students to understand how the Centers for Medicare & Medicaid Services (CMS) considers medical products for coverage, coding, and payment.  We’ll review the history of Medicare coverage and the regulations.  We’ll focus primarily on strategies used to get reimbursement for medical products—both at the national and local levels.

This course provides a comprehensive introduction to medical devices and how they are regulated by the FDA. Topics that will be covered include an overview of the laws and regulations that govern medical devices, the FDA’s organizational structure and responsibilities for medical device regulation, and administrative and legal requirements for medical devices throughout the full product life cycle. Particular focus will be placed on the premarket review, post-market programs enforcement (e.g., Quality Systems Regulation, and FDA inspectional programs). Included will be discussions on the responsible offices and major program requirements and resources. Students will be given various case studies to examine the application of regulations and participate in a 510(k)/PMA workshop, mock inspectional audit, and mock enforcement action. Upon completion of this course, the student will have a working knowledge of the requirements and policies of FDA regulation of medical devices.

Risk analysis is composed of three separate but integrated elements, namely, risk assessment, risk management, and risk communication. Risk communication is an interactive process of exchange of information and opinion on risk among risk assessors, risk managers, and other interested parties. Risk management is the process of weighing policy alternatives in light of the results of risk assessment and, if required, selecting and implementing appropriate control options, including regulatory measures. Students will learn how to integrate risk assessment, risk management, and risk communication using case studies.

Food safety audits provide a credible verification system to the entire food processing industry, including retail environments, meat, fish, and poultry, vegetable, and produce suppliers. Having a HACCP plan in place is often the first step to a successful food safety program, but is not entirely enough to ensure that food safety standards are being adhered to on a consistent basis. In this course, students will learn how to adequately plan for a food crisis situation.

While review of devices prior to marketing plays a significant role in ensuring that patients and providers have access to safe and effective medical devices, continued postmarket surveillance of devices after they reach the market is crucial to protecting public health. The Office of Surveillance and Biometrics (OSB) within FDA’s Center for Devices and Radiologic Health (CDRH) is responsible for overseeing the continued postmarket surveillance of medical devices. This course covers regulatory requirements for industry once a device reaches the market as well as the postmarket surveillance requirements and activities performed by FDA. Students will discover the multifaceted approach to medical device postmarket surveillance through topics including: Postmarket Surveillance Studies, 522 Studies, Registries, Medical Device Reporting (MDR) & Complaint Handling, the MedSun Program, Medical Device Tracking, Unique Device Identification (UDI), MDEpiNet, and Real-World Data/Evidence & the National Evaluation System for health Technology (NEST).

This course addresses the USDA, FSIS regulatory processes that ensure a safe, wholesome, properly labeled food supply. Students will (1) review the history of applicable food law and the rise of the Food Safety Inspection Service as a regulatory agency, (2) evaluate the statutory definitions of adulterated and misbranded as the basis for regulatory requirements, and (3) apply those regulatory requirements to the preparation, packaging, and holding of meat and poultry products. Coursework is built around a project in which students prepare a series of documents required to meet food safety, wholesomeness, and labeling requirements. Course work concludes with a review of FSIS enforcement authority and state inspection programs.

This course provides a comprehensive overview of in vitro diagnostic (IVD) devices and how they are regulated by the U.S. Food and Drug Administration (FDA) and internationally, including the European Union (E.U.). Topics that will be covered include: (1) a summary of the U.S. and international laws, regulations, and policies that govern IVD devices, (2) administrative and legal requirements and resources for IVD devices throughout the full product life-cycle, (3) types of IVD devices, (4) coverage and reimbursement of laboratory tests, and (5) current issues and developments.

Upon completion of this course, the student will have a working knowledge of the requirements and policies of the regulation of IVD devices.

Given the costly drug development process and the limited resources of emerging biopharmaceutical companies, developing an early regulatory strategy - starting well before clinical trials are initiated - is extremely important for the success of a company. This course will discuss different regulatory strategies that several players of the U.S. biopharmaceutical industry have employed. Students will learn about interacting with regulatory agencies, the orphan drug development, accelerated approval, fast track, priority review, and other regulatory mechanisms, pharmacogenomics and biomarkers, adaptive clinical trials, animal rule, generic drug development, and biosimilars. Using case studies, the impact of these regulatory strategies on drug development, and how these strategies have helped many biopharmaceutical companies will be discussed. At the end of this course, students will better understand federal regulations and the aspects involved in developing efficient regulatory strategies.

Innovation is the creation of value from new ideas, concepts, methods, materials, and organizational structures. Life sciences organizations that seek to create value for their stakeholders must do so using available capital resources, including financial capital, human capital, intellectual capital, and physical capital. They should manage those resources to gain leverage and maximize value realized. They then seek to defend and control the value created. Why, then, do most organizations treat innovation (and innovators) in ways similar to the body’s immune system (i.e., by identifying the innovators, isolating them, “killing” them, and ejecting them from the organization? This course will explore innovation, invention, and value creation as a driving force in the biotechnology or life sciences enterprise as well as the ways in which managers should plan to take full advantage of innovation as the only true competitive weapon for long-term success. A special emphasis will be placed on innovation as applied to life science applications (biotechnology, medical devices, health care delivery, drug discovery, development and packaging, bioinformatics, etc.). Topics include invention, ROI, disruption, creative destruction, types of innovation, technology brokering, organizational structures that foster innovation, planning, and managing for innovation. Students are required to read extensively, participate actively in discussions, do case studies, and develop a convincing pitch for an innovation project.

In this course, we study the nuts and bolts of putting together a new company and explore financial markets and the economics of life science companies. The course includes weekly discussions based upon textbook and outside reading materials; the latter are often topical and speak to the issues of the day, and how they may affect investor’s confidence and funding. Video presentations on the part of all students are required. We will examine the roles of corporate officers and the venture community. The students will learn what makes the startup process both attractive and difficult, and will work through that process in a realistic manner.

This course will provide students with knowledge of the basic laws and regulations affecting the advertising and promotion of drugs, biologics, and medical devices. This course is specifically designed to illustrate how the law and regulations are applied on an everyday basis using case study examples as well as provide historical context on regulations and strategies used in the past.

This course is designed to help students working for life sciences companies understand the fundamentals of obtaining government funding for product/technology research and development. While the emphasis will be on grant funding from the National Institutes of Health, other federal and state funding mechanisms will also be covered.

Students will learn how to search for funding opportunities and receive an overview of the NIH funding mechanisms, as well as the background and history of the Small Business Innovation Research (SBIR) program. The course will provide insights on preparing an SBIR proposal and submission procedure. Fundamentals of government contracting law will also be covered.

The ability to successfully navigate the intersections of law, regulation, guidance, and policy has never been more critical to the success of entities engaged in the medical product development and commercial marketing. The entities that make up this industry are very sophisticated in their abilities to innovate at a blazing speed. In contrast, regulators must us a regulatory model that evolves and adapts much slower than their industry counterparts. As a result, regulators are relying more heavily on policy to drive their strategy, actions, and outcomes. Therefore, a clear understanding of regulatory policy is an essential consideration for individuals engaged in the medical product development industry.

This course provides introduction into several key areas of government regulatory policy (both old and new) and regulatory science. The topics covered in this course will serve as a road map for students who want to successfully navigate within this complex and change regulatory model.

This course is open only to students in the MS in Regulatory Science program or the MS in Biotechnology with a concentration in Regulatory Affairs and may be taken only after the student has completed 5 courses and has compiled a strong academic record. Prior to proposing a project, interested students must have identified a study topic and a mentor who is familiar with their prospective inquiry and who is willing to provide guidance and oversee the project. The study project must be independent of current work-related responsibilities as determined by the project mentor. The mentor may be a faculty member, a supervisor from the student's place of work, or any expert with appropriate credentials. The goal of the study project should be a "publishable" article. Students are required to submit a formal proposal for review and approval by the regulatory science program committee. The proposal must be received by the Advanced Academic Programs office no later than one month prior to the beginning of the term in which the student wants to enroll in the course. Students must interact with a member of the program committee periodically for discussion of the project's progress, and a written document must be completed and approved by the program committee and project mentor for the student to receive graduate credit. Additional guidelines can be obtained from the AAP administrative office.

Students wishing to complete a thesis may do so by embarking on a two-semester thesis project, which includes the 410.802 Independent Studies in Regulatory Science Project and 410.8 Biotechnology Thesis courses. This project must be either a hypothesis-based or research question-based original research study. The student must complete 410.802 Independent Research Project and fulfill the requirements of that course, including submission of a project proposal, final paper, and poster presentation, before enrolling in the subsequent thesis course. For the thesis course, students are required to submit a revised proposal (an update of the 410.802 proposal) for review and approval by the faculty adviser and biotechnology program committee one month prior to the beginning of the term. Students must meet with the faculty adviser periodically for discussion of the project’s progress. Graduation with a thesis is subject to approval by the thesis committee and program committee and requires the student to present his/her project to a faculty committee both orally and in writing. Prerequisites: All required regulatory science courses and three elective courses, which must include 410.802 Independent Studies in Regulatory Science and, if hypothesis-driven, 410.645 Biostatistics.

This course synthesizes the knowledge and skills acquired in the Masters of Biotechnology Enterprise and Entrepreneurship program while offering a real-world examination of a bioscience organization and the issues it faces. Students will form interdisciplinary teams and work with faculty and industry professionals on an authentic and current project from a local bioscience public or private company, an entrepreneurial startup, or a nonprofit organization. This course is only open to students completing the Master of Biotechnology Enterprise and Entrepreneurship program.

This course is open only to students in the MBEE or the MS in Biotechnology with a concentration in Enterprise and may be taken only after the student has completed five courses and has compiled a strong academic record. Prior to proposing a project, interested students must have identified a study topic and a mentor who is familiar with their prospective inquiry and who is willing to provide guidance and oversee the project. The study project must be independent of current work-related responsibilities as determined by the project mentor. The mentor may be a faculty member, a supervisor from the student's place of work, or any expert with appropriate credentials. The goal of the study project should be a "publishable" article. Students are required to submit a formal proposal for review and approval by the enterprise/regulatory program committee. The proposal must be received by the Advanced Academic Programs office no later than one month prior to the beginning of the term in which the student wants to enroll in the course. Students must interact with a member of the program committee periodically for discussion of the project's progress, and a written document must be completed and approved by the program committee and project mentor for the student to receive graduate credit. Additional guidelines can be obtained from the AAP administrative office.

STATE-SPECIFIC INFORMATION FOR ONLINE PROGRAMS

Students should be aware of state-specific information for online programs. For more information, please contact an admissions representative.

Audience Menu