The Master of Biotechnology Enterprise and Entrepreneurship (MBEE) is a unique master’s degree that combines biotechnology and entrepreneurial training into a single academic program. The curriculum is designed so that scientists can gain an understanding of the entire biotechnology enterprise and considerations that are unique to the biotechnology industry.

As a result, graduates will be prepared with the tools and knowledge necessary to commercialize their product ideas and/or manage a biotechnology organization.

General Degree

Students like the flexibility of the general degree, as it allows them to tailor the degree to meet their individual career goals. Many students prefer the ability to customize their program by selecting a few courses from our concentration track and selecting other electives. Students may also choose to take laboratory courses in our state-of-the-art wet lab.

Optional Concentration in Biotechnology Legal/Regulatory

Developed in consultation with representatives from the Food and Drug Administration (FDA), the Regulatory Affairs Professional Society (RAPS), and the biotechnology industry, this concentration provides students with the knowledge and understanding required for companies and organizations to comply with federal and state regulatory statutes for the development, approval, and commercialization of drugs, biologics, foods, and medical devices.

Students interested in regulatory affairs may also consider the MS in Regulatory Science degree. Students taking the MBEE with a concentration in Biotechnology Legal/Regulatory are typically more interested in biotechnology enterprise and entrepreneurship, but would also like a better understanding of the regulatory process. Those students in the MS in Regulatory Science program want a deeper understanding of the regulatory process and intend to work specifically in the field. 

Course Requirements

To graduate with the Master of Biotechnology Enterprise and Entrepreneurship degree, you must complete ten courses: six core courses, one practicum, and three electives.

Students do not have to choose a concentration. They may select three electives from the list of more than 100 general biotechnology electives and science elective courses. Attention should be paid to whether the electives under consideration include any prerequisites, and whether permission will be required from the program committee. If a student decides to pursue the optional MBEE concentration, the specific elective course options are defined below.

Core Courses

Six courses are required.

The Biotechnology Proseminar introduces students to issues and challenges facing leaders of public and private-sector organizations as well as t0 communities seeking to achieve shared goals within the biotechnology industry. The course brings together diverse academic, science, and business disciplines (science, regulatory affairs, marketing, finance, legal, ethics, communications, etc.). It explores how these disciplines can be used as powerful tools to create effective leadership and productive collaborations within the industry while improving managerial decision-making.

This course provides an extensive overview of a process for the development of a pharmaceutical by a biotechnology company or pharmaceutical company. The course emphasizes the importance of intellectual property, the basic sciences underpinning the development of a product, and the importance of the interaction between a company and the Food and Drug Administration. Students learn to appreciate the importance of quality control and assurance, good manufacturing practices, preclinical and clinical testing, and the lengthy regulatory processes that govern the development, manufacturing, and eventual sale of biotechnological products. Hands-on solving of practical problems and guest lecturers who are experts in the field familiarize students with the intricacies of the process. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology I or admission to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs.

The roles of managers and leaders within biotechnology companies undergo constant change. Biotechnology managers and leaders must engage in new and innovative problem-solving strategies, lead a diverse and global workforce, develop partnerships with other businesses, customers, and competitors, manage horizontally and across teams, and utilize technology to a competitive advantage. The student is able to address and cure challenges in his/her own organization and learn methods of implementing change, such as negotiation techniques and motivation. The course includes in-depth discussions of leadership skills, communication, conflict resolution, and goal integration. Students research a biotechnology organization, analyze what is working and not working within its management systems, and suggest alternatives.

As bioscience companies grow and mature, leadership needs to evolve. Students will learn how to identify their company’s position in the “Leadership Life Cycle” and learn how to select the right leadership capabilities based on their current organizational needs. Research shows that the right leaders at the right time dramatically improve organizational success. Discussions will address the leadership needs of organizations from early-stage, research-based companies through fully integrated biopharmaceuticals. General leadership practices and strategies, moving ideas from the research bench to the consumer, and strategies to prevent failure will all be discussed.

This course introduces students to the strategic and tactical approaches used in the marketing of biotechnological produce and services. Students gain a thorough understanding of the research and planning necessary to develop a marketing plan, the relationship between the marketing and sales functions, the difference between marketing a scientific product and a scientific service, pricing strategies, distribution alternatives, communications, promotion, and the importance of perception. Knowledge of marketing terminology and techniques proves helpful to anyone in the industry.

Students will build an understanding of the basics of contemporary global monetary systems and the essentials of financial management. This course will include the means to develop a working knowledge of the critical financial factors for decision-makers from the perspectives of key stakeholders. The syllabus is designed to provide students with limited or no background in finance an opportunity to establish an understanding of financial basics and communicate clearly in financial terms when conducting business. This course is uniquely designed to meet the current needs of those leading the global life science industry.

This course provides an overview of the important ethical, legal, and regulatory issues that are critical to the biotechnology industry. The course shares current trends and essential elements of ethics, legal issues, and regulations in a way that allows for an appreciation of how each influences the others. Students will examine core ethical values that guide the practice of science in the biotechnology industry. The course will provide an overview of legal issues, such as protecting inventions, intellectual property, licensing, and the range of regulatory oversight mechanisms with which the biotech industry must comply. This course will review the implications of strategic ethical, legal, and regulatory choices that add value to the biotechnology firm, customers, and society.


The practicum is taken at the end of the program (as the 9th or 10th course) after all core course requirements have been completed.

This course synthesizes the knowledge and skills acquired in the Masters of Biotechnology Enterprise and Entrepreneurship program while offering a real-world examination of a bioscience organization and the issues it faces. Students will form interdisciplinary teams and work with faculty and industry professionals on an authentic and current project from a local bioscience public or private company, an entrepreneurial startup, or a nonprofit organization. This course is only open to students completing the Master of Biotechnology Enterprise and Entrepreneurship program.

Biotechnology Legal/Regulatory Concentration Courses

Pick any three of the following:

Through a case study approach, this course will cover the basic design issues of clinical trials, specifically targeting protocol, case report forms, analysis plans, and informed consent. The design of a specific trial will be studied to illustrate the major issues in the design of a study, such as endpoint definition, control group selection, and eligibility criteria. The course will also cover the analysis plan for a study, including approaches that are central to clinical trials, such as stratified analysis, adjustment factors, and “intention-to-treat” analysis. The planned analytical techniques will include the analysis of correlated data (i.e., clustered data and longitudinal data), survival analysis using the proportional hazards (Cox) Regression model, and linear models. A semester-long project will include the creation of a protocol, case report forms, and informed consent. Prerequisites: 410.645 Biostatistics or equivalent (recommended), 410.651 Clinical Development of Drugs and Biologics (recommended).

This course is a survey of legal topics relevant to a biotech enterprise as it is established, conducts research, and brings innovative products to market. These include property, contracts, regulatory compliance, and patents. Students will be able to analyze common business situations and understand how associated legal risks are managed. Students who have taken 410.687 Ethical, Legal and Regulatory Aspects of the Biotechnology Enterprise will also benefit from this course, as they will analyze contracts, patents, and various statutes and court decisions that impact the biotechnology sector.

This course introduces students to the planning and work required to develop potential new drugs and biologics efficiently. Students gain a thorough appreciation of FDA and International Council for Harmonisation regulations and guidelines. Because the course emphasizes the importance of planning before the execution of any of the necessary steps, lectures use a “backward” approach, discussing the final analysis and report before developing protocols. Topics also include an overview of preclinical investigations, NDA/BLA format and content, clinical development plans, product and assay development, the IND, and trial design, implementation, and management. Prerequisites: 410.303 Foundations of Bioscience OR 410.601 Biochemistry and 410.603 Advanced Cell Biology OR admission to the MS in Regulatory Science Program OR Master of Biotechnology Enterprise and Entrepreneurship programs.

This course provides an overview of the biological processes and laboratory techniques utilized for the discovery, development, and evaluation of therapeutic drugs. Students investigate drug development processes, such as gene cloning, culture scale-up, downstream processing, and product purification. Emphasis is placed on the theory and application of laboratory methods used in drug development, such as recombinant DNA techniques, antibody technology, protein purification, immunoassays, high- throughput drug screening, chromatography, electrophoresis cell receptor characterization, pharmacokinetics, drug toxicity testing and evaluation of therapeutic drugs, diagnostics, and vaccines. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology OR admissions to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs.

The Food, Drug, and Cosmetic Act governs the regulatory approval process for bringing a drug, biologic, medical device, food, or cosmetic to market. The class will discuss administrative procedures followed by the FDA. The course includes an overview of the drug, biologic, and medical device approval processes and the regulation of food and dietary supplements. Students then will be exposed to the enforcement activities of the FDA, including searches, seizure actions, injunctions, criminal prosecutions, and civil penalties authorized under the FD&C Act as well as other statutes, like the Public Health Service Act, which regulates the development and approval of biologics.

Current Good Manufacturing Practice regulations are the minimum standards for the design, production, and distribution of drugs, biologics, and medical devices in the U.S. and internationally. In the U.S., they are codified at the federal level in the FD&C Act and the Code of Federal Regulations and are actively enforced by the FDA. These regulations, however, only begin to describe the practices used in the pharmaceutic and biotech industries. Additional sources of insight and guidance include the FDA’s guidance documents and training manuals, industry trade publications, international compendia, and standards-setting organizations. Students will learn the scope and history of the regulations, industry-standard implementation strategies and “best-practices” approaches, and the FDA’s current expectations. Students will also learn to apply practical solutions to the regulatory issues faced in the pharmaceutical and biotech industries today.

This course is an introduction to the multidisciplinary aspect involved in the process of translating innovations in technology into commercial use, particularly research discoveries emanating from universities and other nonprofit organizations.

Students should be aware of state-specific information for online programs. For more information, please contact an admissions representative.

Audience Menu