This Area of Concentration relies on the same 4 Required Core Courses as the standard MS in Biotechnology degree. Additionally, you will complete 4 Area of Concentration Courses and 2 Elective Courses.

Area of Concentration Courses

Choose 4 courses from the list below to qualify for this Area of Concentration:

This course provides an extensive overview of a process for the development of a pharmaceutical by a biotechnology company or pharmaceutical company. The course emphasizes the importance of intellectual property, the basic sciences underpinning the development of a product, and the importance of the interaction between a company and the Food and Drug Administration. Students learn to appreciate the importance of quality control and assurance, good manufacturing practices, preclinical and clinical testing, and the lengthy regulatory processes that govern the development, manufacturing, and eventual sale of biotechnological products. Hands-on solving of practical problems and guest lecturers who are experts in the field familiarize students with the intricacies of the process. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology I or admission to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs. SCI

Through a case study approach, this course will cover the basic design issues of clinical trials, specifically targeting protocol, case report forms, analysis plans, and informed consent. The design of a specific trial will be studied to illustrate the major issues in the design of a study, such as endpoint definition, control group selection, and eligibility criteria. The course will also cover the analysis plan for a study, including approaches that are central to clinical trials, such as stratified analysis, adjustment factors, and “intention-to-treat” analysis. The planned analytical techniques will include the analysis of correlated data (i.e., clustered data and longitudinal data), survival analysis using the proportional hazards (Cox) Regression model, and linear models. A semester-long project will include the creation of a protocol, case report forms, and informed consent. Prerequisites: 410.645 Biostatistics or equivalent (recommended), 410.651 Clinical Development of Drugs and Biologics (recommended). SCI

Regulatory affairs are comprised of the rules and regulations that govern product development and post-approval marketing. In the U.S., the FDA establishes and oversees the applicable regulations under several statutes, many regulations, and partnerships with legislators, patients, and customers. Biotechnology products may be classified as drugs, biologics, or medical devices. Each type is regulated by a different center within the FDA. This course provides an overview of RA and its effect on product development. Topics include RA history, regulatory agencies, how to access regulatory information, drug submissions, biologics submissions, medical device submissions, GLP, GCP, GMP, and FDA inspections.

This course introduces students to the planning and work required to develop potential new drugs and biologics efficiently. Students gain a thorough appreciation of FDA and International Council for Harmonisation regulations and guidelines. Because the course emphasizes the importance of planning before the execution of any of the necessary steps, lectures use a “backward” approach, discussing the final analysis and report before developing protocols. Topics also include an overview of preclinical investigations, NDA/BLA format and content, clinical development plans, product and assay development, the IND, and trial design, implementation, and management. Prerequisites: 410.303 Foundations of Bioscience OR 410.601 Biochemistry and 410.603 Advanced Cell Biology OR admission to the MS in Regulatory Science Program OR Master of Biotechnology Enterprise and Entrepreneurship programs. SCI

This course provides an overview of the biological processes and laboratory techniques utilized for the discovery, development, and evaluation of therapeutic drugs. Students investigate drug development processes, such as gene cloning, culture scale-up, downstream processing, and product purification. Emphasis is placed on the theory and application of laboratory methods used in drug development, such as recombinant DNA techniques, antibody technology, protein purification, immunoassays, high- throughput drug screening, chromatography, electrophoresis cell receptor characterization, pharmacokinetics, drug toxicity testing and evaluation of therapeutic drugs, diagnostics, and vaccines. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology OR admissions to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs. SCI

Pharmaceutical/biotechnology product approval and marketing requires a good understanding of international regulatory affairs in order to successfully compete in today’s global marketplace. It is important for tomorrow’s leaders to understand and follow the regulatory differences to ensure optimum product development strategies, regulatory approvals, and designs for exports conforming to the foreign regulatory bodies. There are various product development strategies that industry is using to shorten the product development time by conducting preclinical programs outside the U.S., but the strategies require careful planning and interaction with the U.S. and foreign regulatory agencies. With the increased globalization of economy and exports, international regulations will have a bigger impact on the biotechnology business in the future. The course provides a review and analysis of the pharmaceutical/biotechnology product approval processes within the world’s major markets. The key strategies required in phases from preclinical product development to marketing approval of the products in Europe, Japan, and the U.S. will be compared and discussed. Students will explore the European Union regulations and their overall importance to international markets. The course will cover the salient features of common technical and regulatory documents required for submission and approval to the leading regulatory bodies in the world, general guidance documents, international harmonization, and the General Agreement on Tariffs and Trade.

The Food, Drug, and Cosmetic Act governs the regulatory approval process for bringing a drug, biologic, medical device, food, or cosmetic to market. The class will discuss administrative procedures followed by the FDA. The course includes an overview of the drug, biologic, and medical device approval processes and the regulation of food and dietary supplements. Students then will be exposed to the enforcement activities of the FDA, including searches, seizure actions, injunctions, criminal prosecutions, and civil penalties authorized under the FD&C Act as well as other statutes, like the Public Health Service Act, which regulates the development and approval of biologics.

Understanding validation and applying a comprehensive validation philosophy are essential in today’s biotechnology industry. First and foremost, validation allows a company to operate in compliance with the regulations and guidance set forth by the FDA. Perhaps more importantly, it results in equipment assays and processes that are well-understood and robust, less prone to failure, and more cost-effective. This course will introduce the fundamentals of validation, validation master planning, resource management, types of validation and the associated documentation, departmental roles and interactions, and the differences between commissioning and validation. Students will have the opportunity to solve real-world problems, generate actual validation documents, and develop validation program elements that balance regulatory requirements, operational needs, and business expectations.

Current Good Manufacturing Practice regulations are the minimum standards for the design, production, and distribution of drugs, biologics, and medical devices in the U.S. and internationally. In the U.S., they are codified at the federal level in the FD&C Act and the Code of Federal Regulations and are actively enforced by the FDA. These regulations, however, only begin to describe the practices used in the pharmaceutic and biotech industries. Additional sources of insight and guidance include the FDA’s guidance documents and training manuals, industry trade publications, international compendia, and standards-setting organizations. Students will learn the scope and history of the regulations, industry-standard implementation strategies and “best-practices” approaches, and the FDA’s current expectations. Students will also learn to apply practical solutions to the regulatory issues faced in the pharmaceutical and biotech industries today.

Good Food Production Practices are production and farm level approaches to ensure the safety of food for human consumption. Good food production and post-harvest guidelines are designed to reduce the risk of foodborne disease contamination. These good food production procedures can be tailored to any production system and are directed toward the primary sources of contamination: soil, water, hands, and surfaces. Good food production protocols were developed in response to the increase in the number of outbreaks of foodborne diseases resulting from contaminated food. Students will learn to develop good food production regulatory protocols using case studies.

This course provides an overview of the important ethical, legal, and regulatory issues that are critical to the biotechnology industry. The course shares current trends and essential elements of ethics, legal issues, and regulations in a way that allows for an appreciation of how each influences the others. Students will examine core ethical values that guide the practice of science in the biotechnology industry. The course will provide an overview of legal issues, such as protecting inventions, intellectual property, licensing, and the range of regulatory oversight mechanisms with which the biotech industry must comply. This course will review the implications of strategic ethical, legal, and regulatory choices that add value to the biotechnology firm, customers, and society.

As the U.S. food industry expands into international markets, the same companies hoping to sell their products abroad find themselves forced to source ingredients and finished products from foreign suppliers to reduce costs and remain competitive, and to do so, they must comply with a myriad of rules and regulations in both the United States and elsewhere. The most visible enforcement agency at any U.S. border is Customs and Border Protection. However, food importers must also comply with regulations enacted by a host of other government agencies, most notably the FDA, USDA Food Safety and Inspection Service, USDA Animal and Plant Health Inspection Service, and U.S. Fish & Wildlife Service. Food exporters have an even tougher burden, as they need to comply with Customs and food safety, quality, and labeling regulations and certification requirements in both the U.S. and the country that is receiving the goods; this is to mention nothing of the international regulatory infrastructure to which manufacturers must adhere when shipping food internationally. This course will cover each step of the importing and exporting process in detail and explain where to go for key information and guidance.

This introductory course is designed to provide students with a high-level understanding of the complex legal and regulatory requirements for foods. The United States will be the primary focus, but other country regulations will be discussed as contrasts. The history of food regulations will be presented along with the progression to current regulations. Discussions regarding the multitude of agencies overseeing regulations and how they interact will be covered. Regulatory impact on product development, supply chains and food safety culture with be among several topics to introduce foundations for effective communication and collaboration with stakeholders to ensure brand and consumer trust.

Software continually grows more complex and is becoming relied upon by health care professionals in the treatment of patients. This course describes how the U.S. government regulates software used in delivering health care, including the regulations utilized by the FDA and the Centers for Medicare and Medicaid Services. This course covers a wide range of topics, including FDA regulation of software as a medical device and software validation, medical imaging software regulation, electronic record keeping and software used in clinical trials, laboratory information management systems, and HIPAA privacy rules and security standards.

This course provides a comprehensive introduction to medical devices and how they are regulated by the FDA. Topics that will be covered include an overview of the laws and regulations that govern medical devices, the FDA’s organizational structure and responsibilities for medical device regulation, and administrative and legal requirements for medical devices throughout the full product life cycle. Particular focus will be placed on the premarket review, post-market programs enforcement (e.g., Quality Systems Regulation, and FDA inspectional programs). Included will be discussions on the responsible offices and major program requirements and resources. Students will be given various case studies to examine the application of regulations and participate in a 510(k)/PMA workshop, mock inspectional audit, and mock enforcement action. Upon completion of this course, the student will have a working knowledge of the requirements and policies of FDA regulation of medical devices.

Given the costly drug development process and the limited resources of emerging biopharmaceutical companies, developing an early regulatory strategy - starting well before clinical trials are initiated - is extremely important for the success of a company. This course will discuss different regulatory strategies that several players of the U.S. biopharmaceutical industry have employed. Students will learn about interacting with regulatory agencies, the orphan drug development, accelerated approval, fast track, priority review, and other regulatory mechanisms, pharmacogenomics and biomarkers, adaptive clinical trials, animal rule, generic drug development, and biosimilars. Using case studies, the impact of these regulatory strategies on drug development, and how these strategies have helped many biopharmaceutical companies will be discussed. At the end of this course, students will better understand federal regulations and the aspects involved in developing efficient regulatory strategies.

This course is open only to students in the MS in Regulatory Science program or the MS in Biotechnology with a concentration in Regulatory Affairs and may be taken only after the student has completed 5 courses and has compiled a strong academic record. Prior to proposing a project, interested students must have identified a study topic and a mentor who is familiar with their prospective inquiry and who is willing to provide guidance and oversee the project. The study project must be independent of current work-related responsibilities as determined by the project mentor. The mentor may be a faculty member, a supervisor from the student's place of work, or any expert with appropriate credentials. The goal of the study project should be a "publishable" article. Students are required to submit a formal proposal for review and approval by the regulatory science program committee. The proposal must be received by the Advanced Academic Programs office no later than one month prior to the beginning of the term in which the student wants to enroll in the course. Students must interact with a member of the program committee periodically for discussion of the project's progress, and a written document must be completed and approved by the program committee and project mentor for the student to receive graduate credit. Additional guidelines can be obtained from the AAP administrative office.

Elective Courses – Science

Select two electives from the list of more than 50 science elective courses. Be aware that the electives you are considering may include important prerequisites.

STATE-SPECIFIC INFORMATION FOR ONLINE PROGRAMS

Students should be aware of state-specific information for online programs. For more information, please contact an admissions representative.

Audience Menu