Course Schedule

The courses below are those offered for the term. (To view the course description, class dates & times, touch on accordion tab by the title.)

SwatchforWeb Courses that are highlighted are Bioinformatics.

State-specific Information for Online Programs

Note: Students should be aware of state-specific information for online programs. For more information, please contact an admissions representative.

  • Homewood Campus

    410.601.01 - Biochemistry

    Richa Tyagi

    Monday 6:00 - 10:10; 6/3 - 8/19

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology. S

    410.603.01 - Advanced Cell Biology I

    Michael Lebowitz

    Wednesday 6:00 - 10:10; 5/29 - 8/21

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation. S

    410.604.01 - Advanced Cell Biology II

    Michael Lebowitz

    Thursday 6:00 - 10:10; 5/30 - 8/15

    This course is a continuation of 410.603 Advanced Cell Biology and further explores cell organization and subcellular structure Students examine cell-to-cell signaling that involves hormone and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathway to oncogenes is and other disease states will be stressed. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    410.751.01 - Chemical Libraries & Diversity

    Takashi Tsukamoto

    Tuesday 6:00 - 10:10; 6/4 - 8/20

    Chemical diversity and “pharmacological space” will be studied, with an emphasis on disciplines related to drug discovery. Medicinal chemistry, natural product chemistry, focused synthetic libraries, and combinatorial chemistry will be covered. Lipinski’s rules for drug like molecules will be discussed in detail, as well as methods for chemical analysis, in silicon drug design, molecular modeling, and compound storage and handling. In addition, techniques used for assessing and harnessing chemical diversity for drug discovery will be discussed. Prerequisites: All four core courses or approval of program committee. S

  • Montgomery County Campus

    410.601.71 - Biochemistry

    Elena Schwartz

    Monday 6:00 - 10:10; 6/3 - 8/19

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology. S

    410.601.72 - Biochemistry

    Michael Lebowitz

    Tuesday 6:00 - 10:10; 6/4 - 8/20

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology. S

    410.603.71 - Advanced Cell Biology I

    Elena Schwartz

    Tuesday 6:00 - 10:10; 6/4 - 8/20

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation. S

    410.603.72 - Advanced Cell Biology I

    Dr. Arti Varanasi

    Wednesday 2:00 - 6:10; 5/29 - 8/21

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation. S

    410.604.71 - Advanced Cell Biology II


    Monday 6:00 - 10:10; 6/3 - 8/19

    This course is a continuation of 410.603 Advanced Cell Biology and further explores cell organization and subcellular structure Students examine cell-to-cell signaling that involves hormone and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathway to oncogenes is and other disease states will be stressed. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    410.658.71 - Biodefense & Infectious Disease Laboratory Methods

    Meredith Safford
    Kristina Obom

    MTWThF 9:00 - 5:00; 6/3 - 6/7
    Online 6:00 - 8:45; 5/29 - 7/10

    This laboratory course introduces students to the methods and techniques used for bio threat detection, surveillance, and identification. Using bio simulants and demonstrations, various bio detection platforms will be discussed and presented, such as point-of-detection devices and methods, laboratory-based screening and identification technologies (culture, quantitative PCR, immunoassays, biosensors), and high-throughput environmental surveillance methods. Statistical methods for determining diagnostic sensitivity and specificity and assay validity will be discussed. Laboratory practices and procedures for working in simulated Biosafety Level 2 and 3 environments will be practiced. Students will be introduced to the current bioinformatics genomic and proteomic databases used for select agent (category A, B, and C) identification and characterization. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I, undergraduate microbiology or 410.615 Microbiology, or approval of program committee. S

    This is a compressed lab class during Summer 1 with pre-lab and post-lab online course work. Pre-Lab coursework begins May 29th. Class meets onsite the June 3rd through June 7th 9am - 5 pm.

    410.659.71 - Advanced Recombinant DNA Lab

    Mary Donohue

    MTWThF 9:00 - 5:00; 7/29 - 8/2
    Online 6:00 - 8:45; 7/11 - 8/21

    This course is a continuation of Recombinant DNA Laboratory (410.656), intended for those who have completed the introductory course, or who have extensive molecular biology laboratory experience. This second course consists of a series of integrated laboratory exercises designed to give students hands-on experience with a variety of molecular techniques. Exercises include molecular cloning; PCR optimization; quantitative real time PCR; control of gene expression by RNA interference (RNAi), CRISPR and DNA sequencing. Students will be introduced microarray analysis, and utilization of bioinformatics pipelines. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.656 Recombinant DNA Laboratory; or consent of program committee.

    This is a compressed lab class that meets during Summer 2 for one week onsite Monday through Friday, 9 am - 5 pm July 29th through Aug 2nd. There is pre-lab coursework online beginning July 11th and post-lab coursework online.

    410.706.71 - Building and Leading Teams in Health Care

    Admon Alexander

    Monday 6:00 - 10:10; 6/3 - 8/19

    In order to provide the best care possible, health care professionals are working together more now than ever before. As a result, strong leadership and teamwork skills are becoming necessities in joining the health care field. This course will provide hands-on activities to help students develop problem solving skills, learn basic negotiation and mediation strategies and understand their own tendencies as leaders and team members. Using real-world examples, students will explore how strong leadership and teamwork can drive innovative solution to public health issues.

    410.706.72 - Building and Leading Teams in Health Care

    Admon Alexander

    Thursday 6:00 - 10:10; 5/30 - 8/15

    In order to provide the best care possible, health care professionals are working together more now than ever before. As a result, strong leadership and teamwork skills are becoming necessities in joining the health care field. This course will provide hands-on activities to help students develop problem solving skills, learn basic negotiation and mediation strategies and understand their own tendencies as leaders and team members. Using real-world examples, students will explore how strong leadership and teamwork can drive innovative solution to public health issues.

    410.780.71 - Stem Cell Culture Laboratory Methods

    Jamie Austin
    Kristina Obom

    MTWThF 9:00 - 5:00; 7/22 - 7/26
    Online 6:00 - 8:45; 7/11 - 8/21

    This laboratory course introduces students to the cultivation and differentiation of stem cells.  Students are introduced to cell cultivation methods, for three types of stem cells and the basics of tissue engineering. Students will scale-up cells into mini-bioreactors for large scale use.  The class will include industry wide practices in cGMP. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I; 410.652 Cell Culture Techniques or permission of program committee. S

    This is a compressed lab class that meets during Summer 2. It will meet onsite M - F 9 am - 5 pm the week of July 23rd. There will be pre-lab course work online beginning July 11th. and post-lab work online.

    410.800.71 - Independent Research in Biotechnology

    Thomas Koval

    Sunday 12:00 - 12:00; 6/2 - 8/18

    Students in the biotechnology program have the opportunity to enroll in an independent research course. This elective course is an option after a student has completed at least eight-level courses and has compiled a strong academic record. Prior to proposing a project, interested students must have identified a research topic and a mentor who is familiar with their prospective inquiry, and who is willing to provide guidance and oversee the project. The research project must be independent of current work-related responsibilities as determined by the project mentor. The mentor may be a faculty member teaching in the biotechnology program, a supervisor from the student’s place of work, or any expert with appropriate credentials. Students are required to submit a formal proposal for review and approval by the biotechnology program committee. The proposal must be received by the Advanced Academic Programs office no later than one month prior to the beginning of the term in which the student wants to enroll in the course. Students must meet with a member of the program committee periodically for discussion of the project’s progress and a written document must be completed and approved by the program committee and project mentor for the student to receive graduate credit. Additional guidelines can be obtained from the AAP administrative office. Prerequisite: All core courses and four additional courses. S

    410.801.71 - Biotechnology Thesis

    Kristina Obom

    Sunday 12:00 - 12:00; 6/2 - 8/18

    Students wishing to complete a thesis may do so by embarking on a two-semester thesis project, which includes 410.800 Independent Research Project and 410.801 Biotechnology Thesis courses. This project must be a hypothesis-based, original research study. The student must complete 410.800 Independent Research Project and fulfill the requirements of that course, including submission of project proposal, final paper, and poster presentation, before enrolling in the subsequent thesis course. For the thesis course, students are required to submit a revised proposal (an update of the 410.800 proposal) for review and approval by the faculty adviser and biotechnology program committee one month prior to the beginning of the term. Students must meet the faculty adviser periodically for discussion of the project’s progress. Graduation with a thesis is subject to approval by the thesis committee and program committee, and requires the student to present his/her project to a faculty committee both orally and in writing. Prerequisites: Successful completion of 410.800 Independent Research Project and 410.645 Biostatistics.

  • Online Courses

    410.302.81 - Bio-Organic Chemistry

    Jeffrey Froude

    Online 5/29 - 8/21

    This course provides a foundation in structural organic chemistry, acid base chemistry, chemical thermodynamics, and reaction mechanisms. Subjects include Lewis structures, atomic and hybridized orbitals, stereochemistry, inter- and intramolecular forces of attraction, neucleophilic reaction mechanisms, functional groups, and the organic chemistry of biological molecules. Please note that this course does not count toward requirements for the master’s degree in biotechnology. Prerequisite: two semesters of college chemistry. S

    Technology Fee: $200.00

    410.303.81 - Foundations in Bioscience

    Weiying Pan

    Online 5/29 - 8/21

    This course examines the fundamental underlying scientific concepts utilized in the creation and development of biomedical products. Topics to be covered include the structure and function of biomolecules, such as proteins, enzymes, carbohydrates, lipids, and DNA, as well as the structure and function of cellular components, such as membranes, vesicles, organelles, and the cytoskeleton. In addition, students will examine the complexities of metabolism, DNA replication, transcription, translation, signal transduction mechanisms, apoptosis, the cell cycle, and cancer. Please note that this course does not count toward requirements for the master’s degree in either biotechnology or regulatory science and is required as a prerequisite course for some students entering the Master of Science in Regulatory Science. Pre-requisites: one year of college chemistry and one year of college biology or permission of program director. S

    Technology Fee: $200.00

    410.601.81 - Biochemistry

    Karen Wells

    Online 5/29 - 8/21

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology. S

    Technology Fee: $200.00

    410.601.82 - Biochemistry

    Satarupa Das

    Online 5/29 - 8/21

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology. S

    Technology Fee: $200.00

    410.601.83 - Biochemistry


    Online 5/29 - 8/21

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology. S

    Technology Fee: $200.00

    410.601.84 - Biochemistry

    Tyler Chavez

    Online 5/29 - 8/21

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology. S

    Technology Fee: $200.00

    410.602.81 - Molecular Biology

    Valerie Divito

    Online 5/29 - 8/21

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA. S

    Technology Fee: $200.00

    410.602.82 - Molecular Biology

    Dr. Mark Hollier

    Online 5/29 - 8/21

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA. S

    Technology Fee: $200.00

    410.602.83 - Molecular Biology

    Kristin Mullins

    Online 5/29 - 8/21

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA. S

    Technology Fee: $200.00

    410.602.84 - Molecular Biology

    Dr. Mark Hollier

    Online 5/29 - 8/21

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA. S

    Technology Fee: $200.00

    410.603.81 - Advanced Cell Biology I

    Thomas Koval

    Online 5/29 - 8/21

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation. S

    Technology Fee: $200.00

    410.603.82 - Advanced Cell Biology I

    Jeffrey Mahr

    Online 5/29 - 8/21

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation. S

    Technology Fee: $200.00

    410.603.83 - Advanced Cell Biology I

    Tyler Goralski

    Online 5/29 - 8/21

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation. S

    Technology Fee: $200.00

    410.603.84 - Advanced Cell Biology I


    Online 5/29 - 8/21

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation. S

    Technology Fee: $200.00

    410.604.81 - Advanced Cell Biology II

    Dr. Jonathon Bennett

    Online 5/29 - 8/21

    This course is a continuation of 410.603 Advanced Cell Biology and further explores cell organization and subcellular structure Students examine cell-to-cell signaling that involves hormone and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathway to oncogenes is and other disease states will be stressed. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    Technology Fee: $200.00

    410.604.82 - Advanced Cell Biology II

    Lisa Selbie

    Online 5/29 - 8/21

    This course is a continuation of 410.603 Advanced Cell Biology and further explores cell organization and subcellular structure Students examine cell-to-cell signaling that involves hormone and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathway to oncogenes is and other disease states will be stressed. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    Technology Fee: $200.00

    410.604.83 - Advanced Cell Biology II

    Lisa Selbie

    Online 5/29 - 8/21

    This course is a continuation of 410.603 Advanced Cell Biology and further explores cell organization and subcellular structure Students examine cell-to-cell signaling that involves hormone and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathway to oncogenes is and other disease states will be stressed. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    Technology Fee: $200.00

    410.610.81 - Epigenetics, Gene Organization & Expression

    Jonathan Lochamy

    Online 5/29 - 8/21

    Students use genetic analysis and molecular biology techniques to investigate chromosome organization, chromatin structure, functional genomics, and mechanisms of differential gene expression. Other topics include DNA methylation, silencers, enhancers, genomic imprinting, and microarray analysis. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology. S

    Technology Fee: $200.00

    410.610.82 - Epigenetics, Gene Organization & Expression

    Tyshia Wellman

    Online 5/29 - 8/21

    Students use genetic analysis and molecular biology techniques to investigate chromosome organization, chromatin structure, functional genomics, and mechanisms of differential gene expression. Other topics include DNA methylation, silencers, enhancers, genomic imprinting, and microarray analysis. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology. S

    Technology Fee: $200.00

    410.610.83 - Epigenetics, Gene Organization & Expression

    Md Mizanur Rahman

    Online 5/29 - 8/21

    Students use genetic analysis and molecular biology techniques to investigate chromosome organization, chromatin structure, functional genomics, and mechanisms of differential gene expression. Other topics include DNA methylation, silencers, enhancers, genomic imprinting, and microarray analysis. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology. S

    Technology Fee: $200.00

    410.612.81 - Human Molecular Genetics

    Erin Morrey

    Online 5/29 - 8/21

    In this course, students learn to use the tools of modern genomics to elucidate phenotypic variation within populations. The course uses human disease (from simple Mendelian disorders to common, complex disorders) to exemplify the types of studies and tools that can be used to characterize cellular pathophysiology as well as to provide genetic diagnostics and therapies. Students become facile with linkage analysis, cancer genetics, microarray analysis (oligo and DNA arrays), gene therapy, SNP studies, imprinting, disequilibrium mapping, and ethical dilemmas associated with the Human Genome Project. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology. S

    Technology Fee: $200.00

    410.613.81 - Principles of Immunology

    Patrick Cummings

    Online 5/29 - 8/21

    This course covers molecular and cellular immunology. Topics include innate immunity, adaptive immunity, the development and function of B cell and T cell antigen receptors, the major histocompatibility complexes, innate effector mechanisms, humoral and cellular immune responses, and regulation of immune responses. Special topics include immunomodulation, immunodeficiency diseases, autoimmunity, evasion and subversion of the immune system by pathogens, immunotherapies, and vaccines. Students are also introduced to the applied aspects of immunology, which include protein and cellular based immunoassays. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    Technology Fee: $200.00

    410.616.81 - Virology

    Bruce Brown

    Online 5/29 - 8/21

    This course covers the advanced study of viruses with regard to the basic, biochemical, molecular, epidemiological, clinical, and biotechnological aspects of animal viruses primarily, and bacteriophage, plant viruses, viroid’s, prions, and unconventional agents secondarily. Specific areas of virology, including viral structure and assembly, viral replication, viral recombination and evolution, virus-host interactions, viral transformation, gene therapy, antiviral drugs, and vaccines, are presented. The major animal virus families are discussed individually with respect to classification, genomic structure, viroid structure, virus cycle, pathogenesis, clinical features, epidemiology, immunity, and control. The viral vectors and their application in biotechnology are discussed. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    Technology Fee: $200.00

    410.621.81 - Agricultural Biotechnology

    Sherry Ogg

    Online 5/29 - 8/21

    In this course, students are introduced to the application of recombinant DNA technology to agriculture. Studied are methods for the introduction of foreign DNA into plant and animal cells and generation of stably transformed plants and animals. Students consider specific examples of the use of transgenic plants and animals in biotechnology, which can provide protection against insects, diseases, and tolerance to specific herbicides. They also investigate how recombinant growth hormones can result in leaner meat, greater milk yield, and better feed utilization, and how transgenic plants and animals can serve as bioreactors for the production of medicinals or protein pharmaceuticals. Because recombinant agricultural products are released into the environment or consumed as foods, students also need to become familiar with environmental safety issues. Prerequisites: 410.601 Biochemistry 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    Technology Fee: $200.00

    410.622.81 - Molecular Basis of Pharmacology

    Lisa Selbie

    Online 5/29 - 8/21

    This course begins by reviewing receptor binding and enzyme kinetics. Various cellular receptors and their physiology are discussed, as well as the pharmacological agents used to define and affect the receptor’s function. Students study the pharmacology of cell surface receptors and intracellular receptors. Also considered are the drugs that affect enzymes. Prerequisites: All four core courses. S

    Technology Fee: $200.00

    410.627.81 - Translational Biotechnology:From Intellectual Property to Licensing

    Timothy Alcorn

    Online 5/29 - 8/21

    This course provides an extensive overview of a process for development of a pharmaceutical by a biotechnology company or pharmaceutical company. The course emphasizes the importance of intellectual property, the basic sciences underpinning the development of a product, and the importance of the interaction between a company and the Food and Drug Administration. Students learn to appreciate the importance of quality control and assurance, good manufacturing practices, preclinical and clinical testing, and the lengthy regulatory processes that govern the development, manufacture, and eventual sale of biotechnological products. Hands-on solving of practical problems and guest lecturers who are experts in the field familiarize students with the intricacies of the process. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology I or admission to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs.

    Technology Fee: $200.00

    410.627.82 - Translational Biotechnology:From Intellectual Property to Licensing

    Bonnie Robeson

    Online 5/29 - 8/21

    This course provides an extensive overview of a process for development of a pharmaceutical by a biotechnology company or pharmaceutical company. The course emphasizes the importance of intellectual property, the basic sciences underpinning the development of a product, and the importance of the interaction between a company and the Food and Drug Administration. Students learn to appreciate the importance of quality control and assurance, good manufacturing practices, preclinical and clinical testing, and the lengthy regulatory processes that govern the development, manufacture, and eventual sale of biotechnological products. Hands-on solving of practical problems and guest lecturers who are experts in the field familiarize students with the intricacies of the process. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology I or admission to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs.

    Technology Fee: $200.00

    410.630.81 - Gene Therapy

    Erin Morrey

    Online 5/29 - 8/21

    In this course, students learn about how gene therapy can be used to treat or prevent genetic disease in the human population. This course is centered around how disease -causing variations in the human genome, including inherited diseases, mutations, epigenetic modifications, and viral infections, can be targeted using molecular technologies. Students will learn about the benefits and limitations of gene therapy, as well as the bioethical concerns involved with this field of research and medicine.

    Technology Fee: $200.00

    410.630.82 - Gene Therapy

    Erin Morrey

    Online 5/29 - 8/21

    In this course, students learn about how gene therapy can be used to treat or prevent genetic disease in the human population. This course is centered around how disease -causing variations in the human genome, including inherited diseases, mutations, epigenetic modifications, and viral infections, can be targeted using molecular technologies. Students will learn about the benefits and limitations of gene therapy, as well as the bioethical concerns involved with this field of research and medicine.

    Technology Fee: $200.00

    410.633.81 - Introduction to Bioinformatics

    Catherine Campbell

    Online 5/29 - 8/21

    This course explores the theory and practice of biological database searching and analysis. In particular, students are introduced to integrated systems where a variety of data sources are connected through internet access. Information retrieval and interpretation are discussed, and many practical examples in a computer laboratory setting enable students to improve their data mining skills. Methods included in the course are searching the biomedical literature, sequence homology searching and multiple alignment, phylogeny, gene prediction, protein sequence motif analysis and secondary structure prediction, and several genome browsing methods. Introductory analysis using the R programming language is introduced. Computer access is required. Prerequisites: 410.601 Biochemistry. Corequisite: 410.602 Molecular Biology. S

    Technology Fee: $200.00

    410.633.82 - Introduction to Bioinformatics

    Jarrett Morrow

    Online 5/29 - 8/21

    This course explores the theory and practice of biological database searching and analysis. In particular, students are introduced to integrated systems where a variety of data sources are connected through internet access. Information retrieval and interpretation are discussed, and many practical examples in a computer laboratory setting enable students to improve their data mining skills. Methods included in the course are searching the biomedical literature, sequence homology searching and multiple alignment, phylogeny, gene prediction, protein sequence motif analysis and secondary structure prediction, and several genome browsing methods. Introductory analysis using the R programming language is introduced. Computer access is required. Prerequisites: 410.601 Biochemistry. Corequisite: 410.602 Molecular Biology. S

    Technology Fee: $200.00

    410.634.81 - Practical Computer Concepts for Bioinformatics

    Jarrett Morrow

    Online 5/29 - 8/21

    This course introduces students with a background in the life sciences to the basic computing concepts of the UNIX operating system, relational databases, structured programming, object-oriented programming, and the Internet. Included is an introduction to SQL and the Pythonl scripting language. The course emphasizes relevance to molecular biology and bioinformatics. It is intended for students with no computer programming background but with a solid knowledge of molecular biology. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology. S

    Technology Fee: $200.00

    410.634.82 - Practical Computer Concepts for Bioinformatics

    Joshua Orvis

    Online 5/29 - 8/21

    This course introduces students with a background in the life sciences to the basic computing concepts of the UNIX operating system, relational databases, structured programming, object-oriented programming, and the Internet. Included is an introduction to SQL and the Pythonl scripting language. The course emphasizes relevance to molecular biology and bioinformatics. It is intended for students with no computer programming background but with a solid knowledge of molecular biology. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology. S

    Technology Fee: $200.00

    410.638.81 - Cancer Biology

    Meredith Safford

    Online 5/29 - 8/21

    This course provides students with knowledge of the fundamental principles of the molecular and cellular biology of cancer cells. The course explores the role of growth factors and signal transduction mechanisms, oncogenes, tumor suppressor genes, tumor viruses, and angiogenesis in tumorigenesis and metastasis. Special topics include cancer prevention and the array of cancer therapies, which include surgery, chemotherapy, radiation therapy, hormonal therapy, stem cell transplant, and immunotherapies. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cellular Biology I , 410.604 Advanced Cell Biology II. S

    Technology Fee: $200.00

    410.639.81 - Protein Bioinformatics

    Frank Lebeda
    Mark Olson

    Online 5/29 - 8/21

    Because the gap between the number of protein sequences the number of protein crystal structures continues to expand protein structural predictions are increasingly important. This course provides a working knowledge of various computer- based tools available for predicting the structure and function of proteins. Topics include protein database searching, protein physicochemical properties, secondary structure prediction, a statistical verification. Also covered are graphic visualization the different types of three-dimensional folds and predicting 3-D structures by homology. Computer laboratories complement material presented in lectures. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.633 Introduction to Bioinformatics. S

    Technology Fee: $200.00

    410.640.81 - Molecular Phylogenetic Techniques

    Elizabeth Humphries

    Online 5/29 - 8/21

    This course will provide a practical, hands-on introduction to the study of phylogenetics and comparative genomics. Theoretical background on molecular evolution will be provided only as needed to inform the comparative analysis of genomic data. The emphasis of the course will be placed squarely on the understanding and use of a variety of computational tools designed to extract meaningful biological information from molecular sequences. Lectures will provide information on the conceptual essence of the algorithms that underlie various sequence analysis tools and the rationale behind their use. Only programs that are freely available, as either downloadable executables or as Web servers, will be used in this course. Students will be encouraged to use the programs and approaches introduced in the course to address questions relevant to their own work. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.633 Introduction to Bioinformatics. S

    Technology Fee: $200.00

    410.644.81 - Marketing Aspects of Biotechnology

    Steven Geimer

    Online 5/29 - 8/21

    This course introduces students to the strategic and tactical approaches used in the marketing of biotechnological produce and services. Students gain a thorough understanding of the research and planning necessary to develop a marketing plan the relationship between the marketing and sales functions, the difference between marketing a scientific product and a scientific service, pricing strategies, distribution alternatives, communications, promotion, and the importance of perception Knowledge of marketing terminology and techniques prove helpful to anyone in the industry.

    Technology Fee: $200.00

    410.645.81 - Biostatistics

    William McCarthy

    Online 5/29 - 8/21

    This course introduces statistical concepts and analytical methods as applied to data encountered in biotechnology and biomedical sciences. It emphasizes the basic concepts of experimental design, quantitative analysis of data, and statistical inferences. Topics include probability theory and distributions; population parameters and their sample estimates; descriptive statistics for central tendency and dispersion; hypothesis testing and confidence intervals for means, variances, and proportions; categorical data analysis; linear correlation and regression model; logistic regression; analysis of variance; and nonparametric methods. The course provides students a foundation to evaluate information critically to support research objectives and product claims and a better understanding of statistical design of experimental trials for biological products/devices. Prerequisites: Basic mathematics (algebra). S

    Technology fee: $200.00

    410.645.82 - Biostatistics

    William McCarthy

    Online 5/29 - 8/21

    This course introduces statistical concepts and analytical methods as applied to data encountered in biotechnology and biomedical sciences. It emphasizes the basic concepts of experimental design, quantitative analysis of data, and statistical inferences. Topics include probability theory and distributions; population parameters and their sample estimates; descriptive statistics for central tendency and dispersion; hypothesis testing and confidence intervals for means, variances, and proportions; categorical data analysis; linear correlation and regression model; logistic regression; analysis of variance; and nonparametric methods. The course provides students a foundation to evaluate information critically to support research objectives and product claims and a better understanding of statistical design of experimental trials for biological products/devices. Prerequisites: Basic mathematics (algebra). S

    Technology fee: $200.00

    410.647.81 - Research Ethics

    Gregory Kelly

    Online 5/29 - 8/21

    This course covers the basic ethical notions in the conduct of biomedical research with animals and human subjects that make up the core values of scientific integrity. Students explore issues central to these areas, such as the appropriate use of animals in research, informed consent for human subjects, authorship, peer review, and the ethics of the business of science.

    Technology fee: $200.00

    410.649.81 - Introduction to Regulatory Affairs

    Susan Zecchini

    Online 5/29 - 8/21

    Regulatory affairs comprise the rules and regulations govern product development and post-approval marketing. In the U.S. the FDA establishes and oversees the applicable regulations under several statutes, many regulations, and partnership with legislators, patients, and customers. Biotechnology products may be classified as drugs, biologics, or medical devices. Each type is regulated by a different center within the FDA. This course provides an overview of RA and its effect on product development. Topics include RA history, regulatory agencies, how to access regulatory information, drug submissions, biologics submissions, medical device submissions, GLP, GCP, GMP, and FDA inspections.

    Technology Fee: $200.00

    410.649.82 - Introduction to Regulatory Affairs

    Alison St John

    Online 5/29 - 8/21

    Regulatory affairs comprise the rules and regulations govern product development and post-approval marketing. In the U.S. the FDA establishes and oversees the applicable regulations under several statutes, many regulations, and partnership with legislators, patients, and customers. Biotechnology products may be classified as drugs, biologics, or medical devices. Each type is regulated by a different center within the FDA. This course provides an overview of RA and its effect on product development. Topics include RA history, regulatory agencies, how to access regulatory information, drug submissions, biologics submissions, medical device submissions, GLP, GCP, GMP, and FDA inspections.

    Technology Fee: $200.00

    410.651.81 - Clinical Development of Drugs and Biologics

    Jonathan Helfgott
    Michael Marcarelli

    Online 5/29 - 8/21

    This course introduces students to the planning and work required to develop potential new drugs and biologics efficiently. Students gain a thorough appreciation of FDA and International Council for Harmonisation regulations and guidelines. Because the course emphasizes the importance of planning before the execution of any of the necessary steps, lectures use a “backward” approach, discussing the final analysis and report before developing protocols. Topics also include an overview of preclinical investigations; NDA/BLA format and content; clinical development plans; product and assay development; the IND; and trial design, implementation, and management. Prerequisites: 410.303 Foundations of Bioscience OR 410.601 Biochemistry and 410.603 Advanced Cell Biology OR admission to the MS in Regulatory Science Program OR Master of Biotechnology Enterprise and Entrepreneurship programs. S

    Technology Fee: $200.00

    410.651.82 - Clinical Development of Drugs and Biologics

    Christopher Breder

    Online 5/29 - 8/21

    This course introduces students to the planning and work required to develop potential new drugs and biologics efficiently. Students gain a thorough appreciation of FDA and International Council for Harmonisation regulations and guidelines. Because the course emphasizes the importance of planning before the execution of any of the necessary steps, lectures use a “backward” approach, discussing the final analysis and report before developing protocols. Topics also include an overview of preclinical investigations; NDA/BLA format and content; clinical development plans; product and assay development; the IND; and trial design, implementation, and management. Prerequisites: 410.303 Foundations of Bioscience OR 410.601 Biochemistry and 410.603 Advanced Cell Biology OR admission to the MS in Regulatory Science Program OR Master of Biotechnology Enterprise and Entrepreneurship programs. S

    Technology Fee: $200.00

    410.673.81 - Biological Processes in Regulatory Affairs

    Markus Yap

    Online 5/29 - 8/21

    This course provides an overview of the biological processes laboratory techniques utilized for the discovery, development and evaluation of therapeutic drugs. Students investigate drug development processes, such as gene cloning, culture scale-u downstream processing, and product purification. Emphasis is placed on the theory and application of laboratory methods u in drug development, such as recombinant DNA techniques, antibody technology, protein purification, immunoassays, high throughput drug screening, chromatography, electrophoresis cell receptor characterization, pharmacokinetics, drug toxicity testing and evaluation of therapeutic drugs, diagnostics, and vaccines. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology OR admissions to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs. S

    Technology Fee: $200.00

    410.673.82 - Biological Processes in Regulatory Affairs

    Michael Manning

    Online 5/29 - 8/21

    This course provides an overview of the biological processes laboratory techniques utilized for the discovery, development and evaluation of therapeutic drugs. Students investigate drug development processes, such as gene cloning, culture scale-u downstream processing, and product purification. Emphasis is placed on the theory and application of laboratory methods u in drug development, such as recombinant DNA techniques, antibody technology, protein purification, immunoassays, high throughput drug screening, chromatography, electrophoresis cell receptor characterization, pharmacokinetics, drug toxicity testing and evaluation of therapeutic drugs, diagnostics, and vaccines. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology OR admissions to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs. S

    Technology Fee: $200.00

    410.674.81 - Food Microbiology

    Om Singh

    Online 5/29 - 8/21

    Food microbiology encompasses the study of microorganisms that have both beneficial and deleterious effects on the quality and safety of raw and processed meat, poultry, and egg products. Food microbiology focuses on the general biology of the microorganisms that are found in foods, including their growth characteristics, identification, and pathogenesis. Specifically, areas of interest that concern food microbiology are food poisoning, food spoilage, food preservation, and food legislation. Pathogens in product, or harmful microorganisms, result in major public health problems in the United States and worldwide, and are the leading causes of illnesses and death. S

    Technology fee: $200.00

    410.675.81 - International Regulatory Affairs

    Suzanne Fitzpatrick

    Online 5/29 - 8/21

    Pharmaceutical/biotechnology product approval and marketing requires a good understanding of international regulatory affairs in order to successfully compete in today’s global marketplace. It is important for tomorrow’s leaders to understand and follow the regulatory differences to ensure optimum product development strategies, regulatory approvals, and designs for exports conforming to the foreign regulatory bodies. There are various product development strategies that industry is using to shorten the product development time by conducting preclinical programs outside the U.S., but the strategy requires careful planning and interaction with the U.S. and foreign regulatory agencies. With the increase in globalization of economy and exports, international regulations will have a bigger impact on the biotechnology business in the future. The course provides a review and analysis of the pharmaceutical/biotechnology product approval processes within the world’s major markets. The key strategies required in preclinical product development to marketing approval of the products in Europe, Japan, and the U.S. will be compared and discussed. Students will explore the European Union regulations and their overall importance on international markets. The course will cover the salient features of common technical and regulatory documents required for submission and approval to the leading regulatory bodies in the world, general guidance documents, international harmonization, and the General Agreement on Tariffs and Trade.

    Technology Fee: $200.00

    410.676.81 - Food And Drug Law

    Loretta Chi

    Online 5/29 - 8/21

    The Food, Drug, and Cosmetic Act governs the regulatory approval process for bringing a drug, biologic, medical device, food, or cosmetic to market. The class will discuss administrative procedures followed by the FDA. The course includes an overview of the drug, biologic, and medical device approval processes, and the regulation of food and dietary supplements. Students then will be exposed to the enforcement activities of the FDA, including searches, seizure actions, injunctions, criminal prosecutions, and civil penalties authorized under the FD&C Act, as well as other statutes, like the Public Health Service Act which regulates the development and approval of biologics.

    Technology fee: $200.00

    410.676.82 - Food And Drug Law

    Emil Wang

    Online 5/29 - 8/21

    The Food, Drug, and Cosmetic Act governs the regulatory approval process for bringing a drug, biologic, medical device, food, or cosmetic to market. The class will discuss administrative procedures followed by the FDA. The course includes an overview of the drug, biologic, and medical device approval processes, and the regulation of food and dietary supplements. Students then will be exposed to the enforcement activities of the FDA, including searches, seizure actions, injunctions, criminal prosecutions, and civil penalties authorized under the FD&C Act, as well as other statutes, like the Public Health Service Act which regulates the development and approval of biologics.

    Technology Fee: $200.00

    410.679.81 - Practicum in Regulatory Science

    Thomas Colonna

    Online 5/29 - 8/21

    This integrative, case-based course will focus on applying knowledge gained from previous courses in the Master of Science in Regulatory Science program to actual cases from the FDA. For each case, students will assume the role of regulatory specialist, an FDA reviewer or senior-level policy-maker, or other involved stakeholders, such as a consumer group or an advocacy group. Students will be expected to research, evaluate, and present scientifically and legally justifiable positions on case studies from the perspective of their assigned roles. Students will present their perspectives to the class and be asked to debate the issues with the other students from the perspective of their assigned roles. The major responsibility of the students in this course will be to make scientifically and legally defensible recommendations and to justify them through oral and written communication. Please note this course is only open to students in the Master of Science in Regulatory Science and should only be taken after all required courses are completed.

    Technology Fee: $200.00

    410.680.81 - Finance for Biotechnology

    Norman Marcus

    Online 5/29 - 8/21

    Students will build an understanding of the basics of contemporary global monetary systems and the essentials of financial management. This course will include a means to develop a working knowledge of the critical financial factors for decision-makers from the perspectives of key stakeholders. The syllabus is designed to provide students with limited or no background in finance an opportunity to establish a means to understand financial basics and communicate clearly in financial terms when conducting business. This course is uniquely designed to meet the current needs of those leading the global life science industry.  S

    Technology fee: $200.00

    410.683.81 - Introduction to cGMP Compliance

    Nancy Karaszkiewicz

    Online 5/29 - 8/21

    Current Good Manufacturing Practice regulations are the minimum standards for the design, production, and distribute of drugs, biologics, and medical devices in the U.S. and internationally. In the U.S., they are codified at the federal level, in the FD&C Act and the Code of Federal Regulations, and actively enforced by FDA. These regulations, however, only begin to describe the practices used in the pharmaceutic and biotech industries. Additional sources of insight and guidance include the FDA’s guidance documents and training manuals, industry trade publications, international compendia and standards-setting organizations. Students will learn the scope and history of the regulations, industry-standard implementation strategies and “best-practices” approaches, and the FDA’s current expectations. Students will also learn to apply practical solutions to the regulatory issues faced in the pharmaceutical and biotech industries today.

    Technology Fee: $200.00

    410.683.82 - Introduction to cGMP Compliance

    William Roderick Freeman

    Online 5/29 - 8/21

    Current Good Manufacturing Practice regulations are the minimum standards for the design, production, and distribute of drugs, biologics, and medical devices in the U.S. and internationally. In the U.S., they are codified at the federal level, in the FD&C Act and the Code of Federal Regulations, and actively enforced by FDA. These regulations, however, only begin to describe the practices used in the pharmaceutic and biotech industries. Additional sources of insight and guidance include the FDA’s guidance documents and training manuals, industry trade publications, international compendia and standards-setting organizations. Students will learn the scope and history of the regulations, industry-standard implementation strategies and “best-practices” approaches, and the FDA’s current expectations. Students will also learn to apply practical solutions to the regulatory issues faced in the pharmaceutical and biotech industries today.

    Technology Fee: $200.00

    410.684.81 - Technology Transfer & Commercialization

    Concetta Dudley

    Online 5/29 - 8/21

    This course is an introduction to the multidisciplinary aspect involved in the process of translating innovations in technology into commercial use, particularly research discoveries emanating from universities and other nonprofit organization.

    Technology fee: $200.00

    410.684.82 - Technology Transfer & Commercialization

    Reid Adler

    Online 5/29 - 8/21

    This course is an introduction to the multidisciplinary aspect involved in the process of translating innovations in technology into commercial use, particularly research discoveries emanating from universities and other nonprofit organization.

    Technology fee: $200.00

    410.686.81 - Regulation of Good Food Production Practices

    Kantha Shelke

    Online 5/29 - 8/21

    Good Food Production Practices are production and farm level approaches to ensure the safety of food for human consumption. Good food production and post-harvest guidelines are designed to reduce the risk of foodborne disease contamination. These good food production procedures can be tailored to any production system and are directed toward the primary sources of contamination: soil, water, hands, and surfaces. Good food production protocols were developed in response to the increase in the number of outbreaks of foodborne diseases resulting from contaminated food. Students will learn to develop good food production regulatory protocols using case studies.

    Technology Fee: $200.00

    410.687.81 - Ethical,Legal & Regulatory Aspects of the Biotechnology Enterprise

    James Gould

    Online 5/29 - 8/21

    This course provides an overview of the important ethical, legal, and regulatory issues that are critical to the biotechnology industry. The course shares current trends and essential elements of ethics, legal issues, and regulations in a way that allows for an appreciation of how each influences the others.

    Students will examine core ethical values that guide the practice of science in the biotechnology industry. The course will provide an overview of legal issues, such as protecting inventions and intellectual property and licensing, and the range of regulatory oversight mechanisms with which the biotech industry must comply. This course will review the implications of strategic ethical, legal, and regulatory choices that add value to the biotechnology firm, customers, and society.

    Technology fee: $200.00

    410.693.81 - Science, Medicine & Policy in Biodefense

    Sara Ruiz

    Online 5/29 - 8/21

    This course provides a comprehensive introduction to the Concentration in Biodefense. Biological warfare is introduced in its historical context, followed by the properties of the most important biological threat agents, their medical consequences and treatment, diagnostics, and forensics. Relevant international and domestic policy issues are explored, along with defense strategies and the nature of existing dangers to national security. Students should leave the class with a deep understanding of biological warfare and terror agents, the consequences of their potential use, and the available means of protection. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I, undergraduate microbiology or 410.615 Microbiology. S

    Technology fee: $200.00

    410.694.81 - FDA Premarket Applications

    Emil Wang

    Online 5/29 - 8/21

    This course provides a comprehensive overview of the U.S. Food and Drug Administration’s (FDA’s) regulation of the research and development, and marketing of new drugs, biologics, and medical devices. The regulatory requirements for investigational (Investigational New Drug (IND) and Investigational Device Exemption (IDE)) and premarket approval (New Drug Application (NDA), Abbreviated New Drug Application (ANDA), Biologics License Application (BLA), premarket notification (510(k)), Premarket Approval (PMA)) applications will be addressed. The content and format requirements for the preparation, submission, and maintenance of these applications will be covered.

    Technology Fee: $200.00

    410.698.81 - Bioperl

    Andrei Mamoutkine

    Online 5/29 - 8/21

    Perl has emerged as the language of choice for the manipulation of bioinformatics data. Bioperl, a set of object-oriented modules that implements common bioinformatics tasks, has been developed to aid biologists in sequence analysis. The course will include an overview of the principal features of Bioperl and give students extensive opportunity to use Perl and the tools of Bioperl to solve problems in molecular biology sequence analysis. Prerequisites: 410.601 Biochemistry, 410.60 Molecular Biology, 410.634 Practical Computer Concepts for Bioinformatics. S

    Technology Fee: $200.00

    410.702.81 - Biomedical Software Regulation

    Thomas Colonna
    Jonathan Helfgott

    Online 5/29 - 8/21

    Software continually grows more complex and is becoming relied upon by health care professionals in the treatment of patients. This course describes how the U.S. government regulates software used in delivering health care, including the regulations utilized by the FDA, and the Centers for Medicare and Medicaid Services. This course covers a wide range of topics, including: FDA regulation of software as a medical device and software validation, medical imaging software regulation, electronic record keeping and software used in clinical trials, laboratory information management systems, and HIPAA privacy rules and security standards.

    Technology Fee: $200.00

    410.708.81 - Medical Product Reimbursement

    Rochelle Fink

    Online 5/29 - 8/21

    Medical products brought to market need to have a sound payment, coding, and coverage strategy.  Medicare covers over 100 million Americans and it leads the way in all United States insurance policies.  This course will provide insight into how medical product reimbursement works and allow students to understand how the Centers for Medicare & Medicaid Services (CMS) considers medical products for coverage, coding, and payment.  We’ll review the history of Medicare coverage and the regulations.  We’ll focus primarily on strategies used to get reimbursement for medical products—both at the national and local levels.

    Technology fee: $200.00

    410.712.81 - Advanced Practical Computer Concepts for Bioinformatics

    Joshua Orvis

    Online 5/29 - 8/21

    This intermediate-to-advanced-level course, intended as a follow-on to 410.634 Practical Computer Concepts for Bioinformatics (a prerequisite for this new class), will integrate and expand on the concepts from that introductory class to allow students to create working, Web-based bioinformatics applications in a project-based course format. After a review of the concepts covered in 410.634, students will learn how to create functional Web applications on a UNIX system, using Python and CGI to create forms that can be acted upon, and using the Perl DBI module to interface with MySQL relational databases that they will create and populate to retrieve and present information. This will be demonstrated by building an in-class, instructor-led project. More advanced SQL concepts and database modeling will also be covered, as well as introductions to HTML5, CSS3, and Javascript/JQuery. Class time in the latter weeks of the class will be devoted to individual assistance on student projects and to short lectures on advanced topics. Once again, whenever possible, this course will emphasize relevance to solving problems in molecular biology and bioinformatics. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.634 Practical Computer Concepts. S

    Technology fee: $200.00

    410.715.81 - Medical Device Regulation

    David Locke

    Online 5/29 - 8/21

    This course provides a comprehensive introduction to medical devices and how they are regulated by the FDA. Topics that w be covered include an overview of the laws and regulations that govern medical devices, the FDA’s organizational structure and responsibilities for medical device regulation, and administrative and legal requirements for medical devices throughout the full product life cycle. Particular focus will be placed on the premarket review, post-market programs enforcement (e.g., Quality Systems Regulation, and FDA inspectional programs). Included will be discussions on the responsible offices and major program requirements and resources. Students will be given various case studies to examine the application of regulations, and participate in a 510(k)/PMA workshop, mock inspectional audit, and a mock enforcement action. Upon completion of this course, the student will have a working knowledge of the requirements a policies of FDA regulation of medical devices.

    Technology fee: $200.00

    410.716.81 - Food Toxicology

    Suzanne Fitzpatrick

    Online 5/29 - 8/21

    Food toxicology is the study of the nature, properties, effects, and detection of toxic substances in food, and their disease manifestation in humans. This course will provide a general understanding of toxicology related to food and the human food chain. Fundamental concepts will be covered, including dose- response relationships, absorption of toxicants, distribution and storage of toxicants, biotransformation and elimination of toxicants, target organ toxicity, teratogenesis, mutagenesis carcinogenesis, food allergy, and risk assessment. The course will examine chemicals of food interest, such as food additive mycotoxins, and pesticides, and how they are tested and regulated. S

    Technology fee: $200.00

    410.720.81 - Food Safety Inspection Service and the Rule of Law

    Michael Fisher

    Online 5/29 - 8/21

    This course prepares the student for positions requiring a working knowledge of the statutes and regulations applicable to USDA inspection of meat and poultry products, voluntary inspection, exemptions, and humane slaughter. Students will review the history of applicable food law and the rise of the Food Safety Inspection Service as the regulator of meat and poultry products, the evaluate the application of the terms ‘adulterated’ and misbranded’ to the preparation, packaging, and holding of meat and poultry products. Students will examine the regulations in Chapter III, Title 9, Code of Federal Regulations that flow from the governing statutes and apply the knowledge gained to the preparation of documents required for a regulatory compliant written food safety system. Course work concludes with a examination of FSIS enforcement authority and applicable response to regulatory control actions.

    Technology fee: $200.00

    410.727.81 - Regulatory Strategies in Biopharmaceuticals

    Bharat Khurana

    Online 5/29 - 8/21

    Given the costly drug development process and the limited resources of emerging biopharmaceutical companies, developing an eGiven the costly drug development process and the limited resources of emerging biopharmaceutical companies, developing an early regulatory strategy-starting well before clinical trials are initiated is extremely important for the success of a company. This course will discuss different regulatory strategies that several players of the U.S. biopharmaceutical industry have employed. Students will learn about interacting with regulatory agencies, the orphan drug development, accelerated approval, fast track, priority review, and other regulatory mechanisms, pharmacogenomics and biomarkers, adaptive clinical trials, animal rule, generic drug development and biosimilar. Using case studies, the impact of these regulatory strategies on drug development, and how these strategies have helped many biopharmaceutical companies will be discussed. At the end of this course, students will better understand federal regulations and the aspects involved in developing efficient regulatory strategies.arly regulatory strategy- starting well before clinical trials are initiated, is extremely important for the success of a company. This course will discuss different regulatory strategies that several players of the U.S. biopharmaceutical industry have employed. Students will learn about interacting with regulatory agencies, the orphan drug development, accelerated approval, fast track, priority review, and other regulatory mechanisms, pharmacogenomics and biomarkers, adaptive clinical trials, animal rule, generic drug development and biosimilars. Using case studies, the impact of these regulatory strategies on drug development and how these strategies have helped many biopharmaceutical companies will be discussed. At the end of this course, students will better understand federal regulations and the aspects involved in developing efficient regulatory strategies.

    Technology fee: $200.00

    410.728.81 - Managing Innovation in the Life Sciences

    Jill Sorensen

    Online 5/29 - 8/21

    Innovation is the creation of value from new ideas, concepts, methods, materials, and organizational structures. Life sciences organizations that seek to create value for their stakeholders must do so using available capital resources: financial capital, human capital, intellectual capital, and physical capital. They should manage those resources to gain leverage and maximize value realized. They then seek to defend and control the value created. Why, then, do most organizations treat innovation (and innovators) in ways similar to the body’s immune system (i.e., by identifying the innovators, isolating them, “killing” them, and ejecting them from the organization? This course will explore innovation, invention, and value creation as a driving force in the biotechnology or life sciences enterprise, and the ways in which managers should plan to take full advantage of innovation as the only true competitive weapon for long-term success. A special emphasis will be placed on innovation as applied to life science applications (biotechnology, medical devices, health care delivery, drug discovery, development and packaging,bioinformatics, etc.). Topics include invention, ROI, disruption, creative destruction, types of innovation, technology brokering, organizational structures that foster innovation, planning, and managing for innovation. Students are required to read extensively, participate actively in discussions, do case studies, and develop a convincing pitch for an innovation project.

    Technology fee: $200.00

    410.736.81 - Genomic and Personalized Medicine

    Beatrice Kondo
    Farzaneh Sabahi

    Online 5/29 - 8/21

    With the advent of rapid, low-cost whole genome sequencing, the field of personalized medicine is growing from a niche field, to becoming the new standard of practice in medicine. Already, oncology makes use of genomic sequencing to inform treatment decisions based on tumor types, and patients are seeking knowledge about their genetic and environmental risk factors to make informed health decisions. This class explores the evolving field of personalized medicine, examining genomics, as well as proteomics, metabolomics, epigenetics, and the microbiome. Students will read and discuss new developments in pharmacogenomics, rare and complex diseases, genomics for the healthy person, and the ethical, economic, and social implications of these new technologies. These topics will be approached with a view toward application in clinical practice. Prerequisites: 410.602 Molecular Biology; 410.633 Introduction to Bioinformatics. S

    Technology fee: $200.00

    410.736.82 - Genomic and Personalized Medicine

    Beatrice Kondo
    Farzaneh Sabahi

    Online 5/29 - 8/21

    With the advent of rapid, low-cost whole genome sequencing, the field of personalized medicine is growing from a niche field, to becoming the new standard of practice in medicine. Already, oncology makes use of genomic sequencing to inform treatment decisions based on tumor types, and patients are seeking knowledge about their genetic and environmental risk factors to make informed health decisions. This class explores the evolving field of personalized medicine, examining genomics, as well as proteomics, metabolomics, epigenetics, and the microbiome. Students will read and discuss new developments in pharmacogenomics, rare and complex diseases, genomics for the healthy person, and the ethical, economic, and social implications of these new technologies. These topics will be approached with a view toward application in clinical practice. Prerequisites: 410.602 Molecular Biology; 410.633 Introduction to Bioinformatics. S

    Technology fee: $200.00

    410.737.81 - Promotion of Biomedical Products: Regulatory Considerations

    David Locke

    Online 5/29 - 8/21

    This course will provide students with knowledge of the basic laws and regulations affecting the advertising and promotion of drugs, biologics, and medical devices. This course is specifically designed to illustrate how the law and regulations are applied on an everyday basis using case study examples as well as provide historical context on regulations and strategies used in the past.

    Technology fee: $200.00

    410.753.81 - Stem Cell Biology

    Paul Antony

    Online 5/29 - 8/21

    This course will involve discussion and debate on current topics concerning stem cell biology and the use of stem cells in biotechnology and therapeutics. Topics will include review and discussion of developmental and cell biology, stem cell characteristics, stem cell preparation and therapeutic uses, tissue engineering, global regulatory and ethical issues, and commercialization of stem cell therapy. Current peer-reviewed literature and guest experts in the field will provide up-to-date information for discussion. Prerequisites: 410.601 Biochemistry, 410.602 Molecule Biology, 410.603 Advanced Cell Biology I, 410.604 Advanced Cell Biology II. S

    Technology Fee: $200.00

    410.802.81 - Independent Studies in Regulatory Science

    Thomas Colonna

    Online 5/29 - 8/21

    This course is open only to students in the MS in Regulatory Science program or the MS in Biotechnology with a concentration in Regulatory Affairs and may be taken only after the student has completed 5 courses and has compiled a strong academic record. Prior to proposing a project, interested students must have identified a study topic and a mentor who is familiar with their prospective inquiry and who is willing to provide guidance and oversee the project. The study project must be independent of current work-related responsibilities as determined by the project mentor. The mentor may be a faculty member, a supervisor from the student's place of work, or any expert with appropriate credentials. The goal of the study project should be a "publishable" article. Students are required to submit a formal proposal for review and approval by the regulatory science program committee. The proposal must be received by the Advanced Academic Programs office no later than one month prior to the beginning of the term in which the student wants to enroll in the course. Students must interact with a member of the program committee periodically for discussion of the project's progress, and a written document must be completed and approved by the program committee and project mentor for the student to receive graduate credit. Additional guidelines can be obtained from the AAP administrative office.

    Technology fee: $200.00

    410.804.81 - Practicum in Biotechnology Enterprise & Entrepreneurship

    Timothy Alcorn

    Online 5/29 - 8/21

    This course synthesizes the knowledge and skills acquired in the Masters of Biotechnology Enterprise and Entrepreneurship program, while offering a real-world examination of a bioscience organization and the issues it faces. Students will form interdisciplinary teams and work with faculty and industry professionals on an authentic and current project from a local bioscience public or private company, an entrepreneurial startup, or a nonprofit organization. This course is only open to students completing the Master of Biotechnology Enterprise and Entrepreneurship program.

    Technology Fee: $200.00

    410.806.81 - Independent Studies in Biotechnology Enterprise and Entrepreneurship

    Katherine Wellman

    Online 5/29 - 8/21

    This course is open only to students in the MBEE or the MS in Biotechnology with a concentration in Enterprise and may be taken only after the student has completed 5 courses and has compiled a strong academic record. Prior to proposing a project, interested students must have identified a study topic and a mentor who is familiar with their prospective inquiry and who is willing to provide guidance and oversee the project. The study project must be independent of current work-related responsibilities as determined by the project mentor. The mentor may be a faculty member, a supervisor from the student's place of work, or any expert with appropriate credentials. The goal of the study project should be a "publishable" article. Students are required to submit a formal proposal for review and approval by the enterprise/regulatory program committee. The proposal must be received by the Advanced Academic Programs office no later than one month prior to the beginning of the term in which the student wants to enroll in the course. Students must interact with a member of the program committee periodically for discussion of the project's progress, and a written document must be completed and approved by the program committee and project mentor for the student to receive graduate credit. Additional guidelines can be obtained from the AAP administrative office.?

    Technology fee: $200.00