Course Schedule

The courses below are those offered for the term. (To view the course description, class dates & times, touch on accordion tab by the title.)

State-specific Information for Online Programs

Note: Students should be aware of state-specific information for online programs. For more information, please contact an admissions representative.

  • Homewood Campus

    410.601.01 - Biochemistry

    Richa Tyagi

    Monday 6:00 - 9:30; 9/9 - 12/16

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology. S

    410.602.01 - Molecular Biology

    Robert Horner

    Tuesday 6:00 - 9:30; 9/10 - 12/17

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA. S

    410.603.01 - Advanced Cell Biology I

    Mary Donohue

    Thursday 6:00 - 9:30; 9/5 - 12/12

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation. S

    410.604.01 - Advanced Cell Biology II

    Michael Lebowitz

    Wednesday 6:00 - 9:30; 9/4 - 12/11

    This course is a continuation of 410.603 Advanced Cell Biology and further explores cell organization and subcellular structure Students examine cell-to-cell signaling that involves hormone and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathway to oncogenes is and other disease states will be stressed. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    410.631.01 - Infectious Diseases

    Farzaneh Sabahi

    Tuesday 6:00 - 9:30; 9/10 - 12/17

    This course focuses on infectious diseases of mankind, presented in a system-by-system format. Basic principles of host defense and microbial virulence will be discussed. Practical, up-to-date information on the clinical presentation, symptoms, physical findings, laboratory diagnosis, treatment and prevention of the general array of diseases caused by bacteria and viruses will be presented. The use of antibiotics, prophylactic agents, and vaccines along with selected aspects pathogenesis and epidemiology will be covered. More cursor coverage will be given to the fungal and parasitic agents of human disease. The student will develop a broad understanding of the many different kinds of infectious processes to which our bodies are subjected to on an ongoing basis. Prerequisites 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    410.633.01 - Introduction to Bioinformatics

    Robert Lessick

    Thursday 6:00 - 9:30; 9/5 - 12/12

    This course explores the theory and practice of biological database searching and analysis. In particular, students are introduced to integrated systems where a variety of data sources are connected through internet access. Information retrieval and interpretation are discussed, and many practical examples in a computer laboratory setting enable students to improve their data mining skills. Methods included in the course are searching the biomedical literature, sequence homology searching and multiple alignment, phylogeny, gene prediction, protein sequence motif analysis and secondary structure prediction, and several genome browsing methods. Introductory analysis using the R programming language is introduced. Computer access is required. Prerequisites: 410.601 Biochemistry. Corequisite: 410.602 Molecular Biology. S

    410.635.01 - Bioinformatics:Tools for Genome Analysis

    Robert Lessick

    Wednesday 6:00 - 9:30; 9/4 - 12/11

    Large-scale DNA sequencing efforts have resulted in increasingly large numbers of DNA sequences being deposited in public databases. Assigning annotations, such as exon boundaries, repeat regions, and other biologically relevant information, accurately in the feature tables of these sequences requires a significant amount of human intervention. This course instructs students on computer analytical methods for gene identification, promoter analysis, and introductory gene expression analysis using software methods. Additionally, students are introduced to comparative genomics and proteomic analysis methods. Students will become proficient in annotating large genomic DNA sequences. This course covers customizing genome browsers with novel data. Next-generation sequence analysis is covered, through sequence quality control and assembly and analysis of ChIP-seq and RNA-seq data. Students complete two large sequence analysis projects during the course. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.633 Introduction to Bioinformatics or equivalent. S

    This is a hybrid online/onsite course that counts as an onsite course. There will be seven onsite meetings on the following Wednesdays: Sep 11, Sep 25, Oct 16, Nov 6, Nov 20, Dec 4, Dec 11.

    410.638.01 - Cancer Biology

    Meredith Safford

    Thursday 6:00 - 9:30; 9/5 - 12/12

    This course provides students with knowledge of the fundamental principles of the molecular and cellular biology of cancer cells. The course explores the role of growth factors and signal transduction mechanisms, oncogenes, tumor suppressor genes, tumor viruses, and angiogenesis in tumorigenesis and metastasis. Special topics include cancer prevention and the array of cancer therapies, which include surgery, chemotherapy, radiation therapy, hormonal therapy, stem cell transplant, and immunotherapies. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cellular Biology I , 410.604 Advanced Cell Biology II. S

    410.646.01 - Creating a Biotechnology Enterprise

    Luke Thorstenson

    Wednesday 6:00 - 9:30; 9/4 - 12/11

    This course provides a foundation to start or help grow a young biotechnology company from inception through early growth Topics include market assessment of innovative technology, patents and licensing, corporate law, preparing a business plan, raising money from angels and venture capitalists, government grants, strategic alliances, sales and marketing, real estate, human resources, and regulatory affairs. The course provides survey and overview of the key tasks and challenges typically faced by biotech entrepreneurs, their management team, and directors. Students will prepare a business plan for a biotech startup and present the plan to a panel of industry experts and financiers. Leaders from our local bioscience community will guest lecturers for many of the classes.

    410.652.01 - Cell Culture Techniques

    Kristin Mullins

    Thursday 6:30 - 10:00; 9/5 - 12/12

    This laboratory course illustrates the use of basic cell culture techniques for bioscience research and commercial applications. Students are introduced to cell cultivation methods, including proper use of a biological safety cabinet, sterile technique, cell enumeration and media preparation, cultivation of cell lines, detection of contamination, cryopreservation, transfection, cell culture scale-up, and an introduction to bioassays. This course is designed for students with no prior knowledge or with limited knowledge of cell culture methods. Prerequisites: 410.601 Biochemistry, 410.603 Advanced Cell Biology I. S

    410.692.01 - Biological & Chemical Threat Response & Forensics

    Calvin Chue

    Wednesday 6:00 - 9:30; 9/4 - 12/11

    This course introduces the methods and techniques used for biological and chemical threat agent characterization; methods of detection, identification, medical intervention, and forensic attribution are also discussed. Lectures cover a broad variety of topics pertaining to the use of biological and chemical agents, including historical background of biological and chemical agents in classic and discretionary warfare, the introduction of scientific evidence in criminal proceedings and chain of custody for evidentiary materials in crimes and terrorism, quality assurance in laboratory operations, threat containment, decontamination and remediation, health and safety of responders and analysts, and risk assessments. Laboratory methods employed in the characterization and forensic analysis of biological (bacterial, viral, biological toxins, agricultural threats) and chemical agents (classic military chemical agents, toxic industrial chemicals, and materials) will also be discussed. General overviews of techniques and sample collection for classic biological and chemical agents (PCR, DNA sequencing methods, immunological analyses), and for chemical agents (gas chromatography and mass spectrometry). Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I, undergraduate microbiology or 410.615 Microbiology. S

    410.696.01 - Bioassay Development

    Takashi Tsukamoto

    Monday 6:00 - 9:30; 9/9 - 12/16

    This course will cover methodological approaches to bioassay development for high-throughput screening. Both cell-based (cytotoxicity; cytoprotection, high content imaging, and reporter systems) and cell-free assay systems (enzyme, FRET, time resolved fluorescence, quenching assays, and immunological assays) will be included with discussion of the potential prom and pitfalls associated with each assay system. Various assay formats, visualization techniques, and current developments in assay technology will be discussed. Project management techniques will be utilized to aid in the process of assay development. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

  • Montgomery County Campus

    410.601.71 - Biochemistry

    Elena Schwartz

    Tuesday 6:00 - 9:30; 9/10 - 12/17

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology. S

    410.602.71 - Molecular Biology

    Stacy Plum

    Monday 5:30 - 9:00; 9/9 - 12/16

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA. S

    410.602.72 - Molecular Biology

    Dr. Arti Varanasi

    Wednesday 2:00 - 5:30; 9/4 - 12/11

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA. S

    410.603.71 - Advanced Cell Biology I

    Thomas Koval

    Wednesday 6:00 - 9:30; 9/4 - 12/11

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation. S

    410.604.71 - Advanced Cell Biology II

    Elena Schwartz

    Monday 6:00 - 9:30; 9/9 - 12/16

    This course is a continuation of 410.603 Advanced Cell Biology and further explores cell organization and subcellular structure Students examine cell-to-cell signaling that involves hormone and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathway to oncogenes is and other disease states will be stressed. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    410.612.71 - Human Molecular Genetics

    Roza Selimyan

    Tuesday 5:15 - 8:45; 9/10 - 12/17

    In this course, students learn to use the tools of modern genomics to elucidate phenotypic variation within populations. The course uses human disease (from simple Mendelian disorders to common, complex disorders) to exemplify the types of studies and tools that can be used to characterize cellular pathophysiology as well as to provide genetic diagnostics and therapies. Students become facile with linkage analysis, cancer genetics, microarray analysis (oligo and DNA arrays), gene therapy, SNP studies, imprinting, disequilibrium mapping, and ethical dilemmas associated with the Human Genome Project. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology. S

    410.613.71 - Principles of Immunology

    Robert Kaminski

    Tuesday 6:15 - 9:45; 9/10 - 12/17

    This course covers molecular and cellular immunology. Topics include innate immunity, adaptive immunity, the development and function of B cell and T cell antigen receptors, the major histocompatibility complexes, innate effector mechanisms, humoral and cellular immune responses, and regulation of immune responses. Special topics include immunomodulation, immunodeficiency diseases, autoimmunity, evasion and subversion of the immune system by pathogens, immunotherapies, and vaccines. Students are also introduced to the applied aspects of immunology, which include protein and cellular based immunoassays. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    410.615.71 - Microbiology

    Dr. Gregory

    Wednesday 6:00 - 9:30; 9/4 - 12/11

    This course is an overview of microorganisms important in clinical diseases and biotechnology. Students are introduced to the general concepts concerning the morphology, genetics, and reproduction of these microbial agents. Lectures focus on individual organisms, with emphasis on infectious diseases, biotechnology applications, molecular and biochemical characteristics, and molecular and serological identification methods. Students will also discuss the impact biotechnology and particularly genomics, will have on the development of antibiotics and vaccines as treatment and preventive measure Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology410.603 Advanced Cell Biology I. S

    410.645.71 - Biostatistics

    Martha Nason

    Monday 6:00 - 9:30; 9/9 - 12/16

    This course introduces statistical concepts and analytical methods as applied to data encountered in biotechnology and biomedical sciences. It emphasizes the basic concepts of experimental design, quantitative analysis of data, and statistical inferences. Topics include probability theory and distributions; population parameters and their sample estimates; descriptive statistics for central tendency and dispersion; hypothesis testing and confidence intervals for means, variances, and proportions; categorical data analysis; linear correlation and regression model; logistic regression; analysis of variance; and nonparametric methods. The course provides students a foundation to evaluate information critically to support research objectives and product claims and a better understanding of statistical design of experimental trials for biological products/devices. Prerequisites: Basic mathematics (algebra). S

    410.652.71 - Cell Culture Techniques

    Kristin Mullins

    Wednesday 6:00 - 9:30; 9/4 - 12/11

    This laboratory course illustrates the use of basic cell culture techniques for bioscience research and commercial applications. Students are introduced to cell cultivation methods, including proper use of a biological safety cabinet, sterile technique, cell enumeration and media preparation, cultivation of cell lines, detection of contamination, cryopreservation, transfection, cell culture scale-up, and an introduction to bioassays. This course is designed for students with no prior knowledge or with limited knowledge of cell culture methods. Prerequisites: 410.601 Biochemistry, 410.603 Advanced Cell Biology I. S

    410.660.71 - Immunological Techniques in Biotechnology

    Farzaneh Sabahi

    Thursday 6:00 - 9:30; 9/5 - 12/12

    This laboratory course introduces students to methods for analyzing the immune system. Participants gain experience with various immunologic techniques used in research and biotechnology laboratories, such as immunoassays, immunofluorescence, western blot analysis, SDS-PAGE, antibody purification (protein A), and cytokine assays. Additional topics for discussion include hybridism technology phage antibody libraries, therapeutic monoclonal antibodies, and flow cytometry. Prerequisites: 410.601 Biochemistry, 410.6 Molecular Biology, 410.603 Advanced Cell Biology I, 410.613 Principles of Immunology or undergraduate immunology course highly recommended, or consent of program committee. S

    410.705.71 - Problem-solving for Innovation in Health Care

    Philip Harding

    Wednesday 10:00 - 1:30; 9/4 - 12/11

    Whether tackling small business challenges in a clinic or creating global initiatives, being a health care provider means being a problem-solver. This course focuses on helping students develop problem-solving strategy and innovation development models necessary for every health care provider to more effectively tackling challenges. Students will develop a working knowledge of design thinking principles and techniques as well as how they can be utilized to create positive change in any context. While evaluating real-world problems, students will consider how these techniques can be utilized to turn an innovative idea into an effective solution. Students will work collaboratively on real-world projects, turn their ideas into practical action, and demonstrate their ability to leverage health care and social innovation to bring change through community-based and global initiatives.

    410.733.71 - Comparative Animal Physiology

    Beatrice Kondo

    Tuesday 1:00 - 4:30; 9/10 - 12/17

    This class examines animal physiology from an evolutionary and comparative viewpoint. The goal is to examine the commonalities, and unique differences in how various anima organisms address the necessary life functions. Topics will include homeostatic mechanisms as an overarching theme, integrating the following systems: nervous, endocrine, muscle, circulatory, defense, respiratory, excretory, fluid and acid-base balance, digestive, energy balance and thermal, and reproductive. S

    410.750.71 - Molecular Targets & Cancer

    Jessica Faupel-Badger

    Tuesday 6:00 - 9:30; 9/10 - 12/17

    This course will investigate current and potential molecular targets in cancer including kinases, DNA repair pathways, epigenetic modifications, immunotherapy approaches, hormonal, metastasis and angiogenesis targets. Discussion will also include topics on what defines a molecular target and the methods by which they are evaluated. Prerequisites: 410.601 Biochemistry, 410.602 Molecule Biology, 410.603 Advanced Cell Biology I. Recommended: 410.604. Advanced Cell Biology II. S

    410.751.71 - Chemical Libraries & Diversity

    Allen Duplantier

    Wednesday 6:00 - 9:30; 9/4 - 12/11

    Chemical diversity and “pharmacological space” will be studied, with an emphasis on disciplines related to drug discovery. Medicinal chemistry, natural product chemistry, focused synthetic libraries, and combinatorial chemistry will be covered. Lipinski’s rules for drug like molecules will be discussed in detail, as well as methods for chemical analysis, in silicon drug design, molecular modeling, and compound storage and handling. In addition, techniques used for assessing and harnessing chemical diversity for drug discovery will be discussed. Prerequisites: All four core courses or approval of program committee. S

    410.800.71 - Independent Research in Biotechnology

    Thomas Koval

    Sunday 12:00 - 12:00; 9/4 - 12/17

    Students in the biotechnology program have the opportunity to enroll in an independent research course. This elective course is an option after a student has completed at least eight-level courses and has compiled a strong academic record. Prior to proposing a project, interested students must have identified a research topic and a mentor who is familiar with their prospective inquiry, and who is willing to provide guidance and oversee the project. The research project must be independent of current work-related responsibilities as determined by the project mentor. The mentor may be a faculty member teaching in the biotechnology program, a supervisor from the student’s place of work, or any expert with appropriate credentials. Students are required to submit a formal proposal for review and approval by the biotechnology program committee. The proposal must be received by the Advanced Academic Programs office no later than one month prior to the beginning of the term in which the student wants to enroll in the course. Students must meet with a member of the program committee periodically for discussion of the project’s progress and a written document must be completed and approved by the program committee and project mentor for the student to receive graduate credit. Additional guidelines can be obtained from the AAP administrative office. Prerequisite: All core courses and four additional courses. S

    410.801.71 - Biotechnology Thesis

    Kristina Obom

    Sunday 12:00 - 12:00; 9/4 - 12/17

    Students wishing to complete a thesis may do so by embarking on a two-semester thesis project, which includes 410.800 Independent Research Project and 410.801 Biotechnology Thesis courses. This project must be a hypothesis-based, original research study. The student must complete 410.800 Independent Research Project and fulfill the requirements of that course, including submission of project proposal, final paper, and poster presentation, before enrolling in the subsequent thesis course. For the thesis course, students are required to submit a revised proposal (an update of the 410.800 proposal) for review and approval by the faculty adviser and biotechnology program committee one month prior to the beginning of the term. Students must meet the faculty adviser periodically for discussion of the project’s progress. Graduation with a thesis is subject to approval by the thesis committee and program committee, and requires the student to present his/her project to a faculty committee both orally and in writing. Prerequisites: Successful completion of 410.800 Independent Research Project and 410.645 Biostatistics.

  • Online Courses

    410.302.81 - Bio-Organic Chemistry

    Jeffrey Froude

    Online 9/4 - 12/17

    This course provides a foundation in structural organic chemistry, acid base chemistry, chemical thermodynamics, and reaction mechanisms. Subjects include Lewis structures, atomic and hybridized orbitals, stereochemistry, inter- and intramolecular forces of attraction, neucleophilic reaction mechanisms, functional groups, and the organic chemistry of biological molecules. Please note that this course does not count toward requirements for the master’s degree in biotechnology. Prerequisite: two semesters of college chemistry. S

    Technology Fee: $200.00

    410.302.82 - Bio-Organic Chemistry

    Jeffrey Froude

    Online 9/4 - 12/17

    This course provides a foundation in structural organic chemistry, acid base chemistry, chemical thermodynamics, and reaction mechanisms. Subjects include Lewis structures, atomic and hybridized orbitals, stereochemistry, inter- and intramolecular forces of attraction, neucleophilic reaction mechanisms, functional groups, and the organic chemistry of biological molecules. Please note that this course does not count toward requirements for the master’s degree in biotechnology. Prerequisite: two semesters of college chemistry. S

    410.303.81 - Foundations in Bioscience

    Weiying Pan

    Online 9/4 - 12/17

    This course examines the fundamental underlying scientific concepts utilized in the creation and development of biomedical products. Topics to be covered include the structure and function of biomolecules, such as proteins, enzymes, carbohydrates, lipids, and DNA, as well as the structure and function of cellular components, such as membranes, vesicles, organelles, and the cytoskeleton. In addition, students will examine the complexities of metabolism, DNA replication, transcription, translation, signal transduction mechanisms, apoptosis, the cell cycle, and cancer. Please note that this course does not count toward requirements for the master’s degree in either biotechnology or regulatory science and is required as a prerequisite course for some students entering the Master of Science in Regulatory Science. Pre-requisites: one year of college chemistry and one year of college biology or permission of program director. S

    Technology Fee: $200.00

    410.303.82 - Foundations in Bioscience

    Weiying Pan

    Online 9/4 - 12/17

    This course examines the fundamental underlying scientific concepts utilized in the creation and development of biomedical products. Topics to be covered include the structure and function of biomolecules, such as proteins, enzymes, carbohydrates, lipids, and DNA, as well as the structure and function of cellular components, such as membranes, vesicles, organelles, and the cytoskeleton. In addition, students will examine the complexities of metabolism, DNA replication, transcription, translation, signal transduction mechanisms, apoptosis, the cell cycle, and cancer. Please note that this course does not count toward requirements for the master’s degree in either biotechnology or regulatory science and is required as a prerequisite course for some students entering the Master of Science in Regulatory Science. Pre-requisites: one year of college chemistry and one year of college biology or permission of program director. S

    Technology Fee: $200.00

    410.601.81 - Biochemistry

    Karen Wells

    Online 9/4 - 12/17

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology. S

    Technology Fee: $200.00

    410.601.82 - Biochemistry

    Karen Wells

    Online 9/4 - 12/17

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology. S

    Technology Fee: $200.00

    410.601.83 - Biochemistry

    Satarupa Das

    Online 9/4 - 12/17

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology. S

    Technology Fee: $200.00

    410.601.84 - Biochemistry

    Michael Lebowitz

    Online 9/4 - 12/17

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology. S

    Technology Fee: $200.00

    410.601.85 - Biochemistry

    Tyler Chavez

    Online 9/4 - 12/17

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology. S

    Technology Fee: $200.00

    410.602.81 - Molecular Biology

    Dr. Arti Varanasi

    Online 9/4 - 12/17

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA. S

    Technology Fee: $200.00

    410.602.82 - Molecular Biology

    Sherry Ogg

    Online 9/4 - 12/17

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA. S

    Technology Fee: $200.00

    410.602.83 - Molecular Biology

    Dr. Mark Hollier

    Online 9/4 - 12/17

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA. S

    Technology Fee: $200.00

    410.602.84 - Molecular Biology

    Valerie Divito

    Online 9/4 - 12/17

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA. S

    Technology Fee: $200.00

    410.602.85 - Molecular Biology

    Dr. Jonathon Bennett

    Online 9/4 - 12/17

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA. S

    Technology Fee: $200.00

    410.602.86 - Molecular Biology

    Robert Webb

    Online 9/4 - 12/17

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA. S

    Technology Fee: $200.00

    410.603.81 - Advanced Cell Biology I

    Thomas Koval

    Online 9/4 - 12/17

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation. S

    Technology Fee: $200.00

    410.603.82 - Advanced Cell Biology I

    Mary Donohue

    Online 9/4 - 12/17

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation. S

    Technology Fee: $200.00

    410.603.83 - Advanced Cell Biology I

    Lisa Selbie

    Online 9/4 - 12/17

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation. S

    Technology Fee: $200.00

    410.603.84 - Advanced Cell Biology I

    Jeffrey Mahr

    Online 9/4 - 12/17

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation. S

    Technology Fee: $200.00

    410.603.85 - Advanced Cell Biology I

    Tyler Goralski

    Online 9/4 - 12/17

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation. S

    Technology Fee: $200.00

    410.604.81 - Advanced Cell Biology II

    Thomas Koval

    Online 9/4 - 12/17

    This course is a continuation of 410.603 Advanced Cell Biology and further explores cell organization and subcellular structure Students examine cell-to-cell signaling that involves hormone and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathway to oncogenes is and other disease states will be stressed. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    Technology Fee: $200.00

    410.604.82 - Advanced Cell Biology II

    Nicole Glaser-George

    Online 9/4 - 12/17

    This course is a continuation of 410.603 Advanced Cell Biology and further explores cell organization and subcellular structure Students examine cell-to-cell signaling that involves hormone and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathway to oncogenes is and other disease states will be stressed. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    Technology Fee: $200.00

    410.604.83 - Advanced Cell Biology II

    Nicole Glaser-George

    Online 9/4 - 12/17

    This course is a continuation of 410.603 Advanced Cell Biology and further explores cell organization and subcellular structure Students examine cell-to-cell signaling that involves hormone and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathway to oncogenes is and other disease states will be stressed. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    Technology Fee: $200.00

    410.604.84 - Advanced Cell Biology II

    Lisa Selbie

    Online 9/4 - 12/17

    This course is a continuation of 410.603 Advanced Cell Biology and further explores cell organization and subcellular structure Students examine cell-to-cell signaling that involves hormone and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathway to oncogenes is and other disease states will be stressed. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    Technology Fee: $200.00

    410.607.81 - Proseminar in Biotechnology

    Katherine Wellman

    Online 9/4 - 12/17

    The Biotechnology Proseminar introduces students to issues and challenges facing leaders of public and private-sector organizations, and communities seeking to achieve shared goals within the biotechnology industry. The course brings together diverse academic science and business disciplines (science, regulatory affairs, marketing, finance, legal, ethics, communications, etc.). It explores how these disciplines can be used as powerful tools to create effective leadership and productive collaborations within the industry, while improving managerial decision-making.

    Technology Fee: $200.00

    410.607.82 - Proseminar in Biotechnology

    Katherine Wellman

    Online 9/4 - 12/17

    The Biotechnology Proseminar introduces students to issues and challenges facing leaders of public and private-sector organizations, and communities seeking to achieve shared goals within the biotechnology industry. The course brings together diverse academic science and business disciplines (science, regulatory affairs, marketing, finance, legal, ethics, communications, etc.). It explores how these disciplines can be used as powerful tools to create effective leadership and productive collaborations within the industry, while improving managerial decision-making.

    Technology Fee: $200.00

    410.610.81 - Epigenetics, Gene Organization & Expression

    Jonathan Lochamy

    Online 9/4 - 12/17

    Students use genetic analysis and molecular biology techniques to investigate chromosome organization, chromatin structure, functional genomics, and mechanisms of differential gene expression. Other topics include DNA methylation, silencers, enhancers, genomic imprinting, and microarray analysis. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology. S

    Technology Fee: $200.00

    410.610.82 - Epigenetics, Gene Organization & Expression

    Md Mizanur Rahman

    Online 9/4 - 12/17

    Students use genetic analysis and molecular biology techniques to investigate chromosome organization, chromatin structure, functional genomics, and mechanisms of differential gene expression. Other topics include DNA methylation, silencers, enhancers, genomic imprinting, and microarray analysis. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology. S

    Technology Fee: $200.00

    410.610.83 - Epigenetics, Gene Organization & Expression

    Tyshia Wellman

    Online 9/4 - 12/17

    Students use genetic analysis and molecular biology techniques to investigate chromosome organization, chromatin structure, functional genomics, and mechanisms of differential gene expression. Other topics include DNA methylation, silencers, enhancers, genomic imprinting, and microarray analysis. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology. S

    Technology Fee: $200.00

    410.612.81 - Human Molecular Genetics

    Erin Morrey

    Online 9/4 - 12/17

    In this course, students learn to use the tools of modern genomics to elucidate phenotypic variation within populations. The course uses human disease (from simple Mendelian disorders to common, complex disorders) to exemplify the types of studies and tools that can be used to characterize cellular pathophysiology as well as to provide genetic diagnostics and therapies. Students become facile with linkage analysis, cancer genetics, microarray analysis (oligo and DNA arrays), gene therapy, SNP studies, imprinting, disequilibrium mapping, and ethical dilemmas associated with the Human Genome Project. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology. S

    Technology Fee: $200.00

    410.613.81 - Principles of Immunology

    Patrick Cummings

    Online 9/4 - 12/17

    This course covers molecular and cellular immunology. Topics include innate immunity, adaptive immunity, the development and function of B cell and T cell antigen receptors, the major histocompatibility complexes, innate effector mechanisms, humoral and cellular immune responses, and regulation of immune responses. Special topics include immunomodulation, immunodeficiency diseases, autoimmunity, evasion and subversion of the immune system by pathogens, immunotherapies, and vaccines. Students are also introduced to the applied aspects of immunology, which include protein and cellular based immunoassays. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    Technology Fee: $200.00

    410.613.82 - Principles of Immunology

    Patrick Cummings

    Online 9/4 - 12/17

    This course covers molecular and cellular immunology. Topics include innate immunity, adaptive immunity, the development and function of B cell and T cell antigen receptors, the major histocompatibility complexes, innate effector mechanisms, humoral and cellular immune responses, and regulation of immune responses. Special topics include immunomodulation, immunodeficiency diseases, autoimmunity, evasion and subversion of the immune system by pathogens, immunotherapies, and vaccines. Students are also introduced to the applied aspects of immunology, which include protein and cellular based immunoassays. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    Technology Fee: $200.00

    410.616.81 - Virology

    Bruce Brown

    Online 9/4 - 12/17

    This course covers the advanced study of viruses with regard to the basic, biochemical, molecular, epidemiological, clinical, and biotechnological aspects of animal viruses primarily, and bacteriophage, plant viruses, viroid’s, prions, and unconventional agents secondarily. Specific areas of virology, including viral structure and assembly, viral replication, viral recombination and evolution, virus-host interactions, viral transformation, gene therapy, antiviral drugs, and vaccines, are presented. The major animal virus families are discussed individually with respect to classification, genomic structure, viroid structure, virus cycle, pathogenesis, clinical features, epidemiology, immunity, and control. The viral vectors and their application in biotechnology are discussed. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    Technology Fee: $200.00

    410.627.81 - Translational Biotechnology:From Intellectual Property to Licensing

    Timothy Alcorn

    Online 9/4 - 12/17

    This course provides an extensive overview of a process for development of a pharmaceutical by a biotechnology company or pharmaceutical company. The course emphasizes the importance of intellectual property, the basic sciences underpinning the development of a product, and the importance of the interaction between a company and the Food and Drug Administration. Students learn to appreciate the importance of quality control and assurance, good manufacturing practices, preclinical and clinical testing, and the lengthy regulatory processes that govern the development, manufacture, and eventual sale of biotechnological products. Hands-on solving of practical problems and guest lecturers who are experts in the field familiarize students with the intricacies of the process. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology I or admission to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs.

    Technology Fee: $200.00

    410.627.82 - Translational Biotechnology:From Intellectual Property to Licensing

    Timothy Alcorn

    Online 9/4 - 12/17

    This course provides an extensive overview of a process for development of a pharmaceutical by a biotechnology company or pharmaceutical company. The course emphasizes the importance of intellectual property, the basic sciences underpinning the development of a product, and the importance of the interaction between a company and the Food and Drug Administration. Students learn to appreciate the importance of quality control and assurance, good manufacturing practices, preclinical and clinical testing, and the lengthy regulatory processes that govern the development, manufacture, and eventual sale of biotechnological products. Hands-on solving of practical problems and guest lecturers who are experts in the field familiarize students with the intricacies of the process. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology I or admission to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs.

    Technology Fee: $200.00

    410.628.81 - Neurobiology

    Karen Wells

    Online 9/4 - 12/17

    This course provides a framework for understanding the molecular physiology of neuronal structure, signaling, and circuitry, and how this cellular design is ultimately integrated to achieve higher cognitive functions, such as perception, control of movement, learning, and memory. The course introduces the students to various current neuroscience topics, including but not limited to membrane physiology and electrical excitability of neurons, neurotransmitters and synaptic transmission, signaling at the neuromuscular junction, cellular and higher- order aspects of perception and motor control, molecular mechanisms of neural development, and the molecular basis of learning and memory. This course places particular emphasis on the genetic and molecular bases of a wide variety of neurological and neurodegenerative diseases, such as multiple sclerosis, amyotrophic lateral sclerosis, Parkinson’s, and Alzheimer’s. Prerequisites: All four core courses. S

    Technology Fee: $200.00

    410.629.81 - Genes & Disease

    Kristina Obom

    Online 9/4 - 12/17

    Because of recent advances, powerful diagnostic tests now detect genetic diseases, and there is promise of gene replacement therapy. In this course, students cover general genetic principles, DNA tools for genetic analysis, cytogenetics, gene mapping, the molecular basis of genetic diseases, animal models, immunogenetics, genetics of development, genetics of cancer, and treatment of genetic diseases. Molecular methods of analysis are emphasized. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    Technology Fee: $200.00

    410.630.81 - Gene Therapy

    Erin Morrey

    Online 9/4 - 12/17

    In this course, students learn about how gene therapy can be used to treat or prevent genetic disease in the human population. This course is centered around how disease -causing variations in the human genome, including inherited diseases, mutations, epigenetic modifications, and viral infections, can be targeted using molecular technologies. Students will learn about the benefits and limitations of gene therapy, as well as the bioethical concerns involved with this field of research and medicine.

    Technology Fee: $200.00

    410.630.82 - Gene Therapy

    Erin Morrey

    Online 9/4 - 12/17

    In this course, students learn about how gene therapy can be used to treat or prevent genetic disease in the human population. This course is centered around how disease -causing variations in the human genome, including inherited diseases, mutations, epigenetic modifications, and viral infections, can be targeted using molecular technologies. Students will learn about the benefits and limitations of gene therapy, as well as the bioethical concerns involved with this field of research and medicine.

    Technology Fee: $200.00

    410.633.81 - Introduction to Bioinformatics

    Sherry Ogg

    Online 9/4 - 12/17

    This course explores the theory and practice of biological database searching and analysis. In particular, students are introduced to integrated systems where a variety of data sources are connected through internet access. Information retrieval and interpretation are discussed, and many practical examples in a computer laboratory setting enable students to improve their data mining skills. Methods included in the course are searching the biomedical literature, sequence homology searching and multiple alignment, phylogeny, gene prediction, protein sequence motif analysis and secondary structure prediction, and several genome browsing methods. Introductory analysis using the R programming language is introduced. Computer access is required. Prerequisites: 410.601 Biochemistry. Corequisite: 410.602 Molecular Biology. S

    Technology Fee: $200.00

    410.633.82 - Introduction to Bioinformatics

    Catherine Campbell

    Online 9/4 - 12/17

    This course explores the theory and practice of biological database searching and analysis. In particular, students are introduced to integrated systems where a variety of data sources are connected through internet access. Information retrieval and interpretation are discussed, and many practical examples in a computer laboratory setting enable students to improve their data mining skills. Methods included in the course are searching the biomedical literature, sequence homology searching and multiple alignment, phylogeny, gene prediction, protein sequence motif analysis and secondary structure prediction, and several genome browsing methods. Introductory analysis using the R programming language is introduced. Computer access is required. Prerequisites: 410.601 Biochemistry. Corequisite: 410.602 Molecular Biology. S

    Technology Fee: $200.00

    410.633.83 - Introduction to Bioinformatics

    Md Mizanur Rahman

    Online 9/4 - 12/17

    This course explores the theory and practice of biological database searching and analysis. In particular, students are introduced to integrated systems where a variety of data sources are connected through internet access. Information retrieval and interpretation are discussed, and many practical examples in a computer laboratory setting enable students to improve their data mining skills. Methods included in the course are searching the biomedical literature, sequence homology searching and multiple alignment, phylogeny, gene prediction, protein sequence motif analysis and secondary structure prediction, and several genome browsing methods. Introductory analysis using the R programming language is introduced. Computer access is required. Prerequisites: 410.601 Biochemistry. Corequisite: 410.602 Molecular Biology. S

    Technology Fee: $200.00

    410.633.84 - Introduction to Bioinformatics

    Jarrett Morrow

    Online 9/4 - 12/17

    This course explores the theory and practice of biological database searching and analysis. In particular, students are introduced to integrated systems where a variety of data sources are connected through internet access. Information retrieval and interpretation are discussed, and many practical examples in a computer laboratory setting enable students to improve their data mining skills. Methods included in the course are searching the biomedical literature, sequence homology searching and multiple alignment, phylogeny, gene prediction, protein sequence motif analysis and secondary structure prediction, and several genome browsing methods. Introductory analysis using the R programming language is introduced. Computer access is required. Prerequisites: 410.601 Biochemistry. Corequisite: 410.602 Molecular Biology. S

    Technology Fee: $200.00

    410.634.81 - Practical Computer Concepts for Bioinformatics

    Joshua Orvis

    Online 9/4 - 12/17

    This course introduces students with a background in the life sciences to the basic computing concepts of the UNIX operating system, relational databases, structured programming, object-oriented programming, and the Internet. Included is an introduction to SQL and the Pythonl scripting language. The course emphasizes relevance to molecular biology and bioinformatics. It is intended for students with no computer programming background but with a solid knowledge of molecular biology. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology. S

    Technology Fee: $200.00

    410.634.82 - Practical Computer Concepts for Bioinformatics

    Jarrett Morrow

    Online 9/4 - 12/17

    This course introduces students with a background in the life sciences to the basic computing concepts of the UNIX operating system, relational databases, structured programming, object-oriented programming, and the Internet. Included is an introduction to SQL and the Pythonl scripting language. The course emphasizes relevance to molecular biology and bioinformatics. It is intended for students with no computer programming background but with a solid knowledge of molecular biology. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology. S

    Technology Fee: $200.00

    410.634.83 - Practical Computer Concepts for Bioinformatics

    John Greene

    Online 9/4 - 12/17

    This course introduces students with a background in the life sciences to the basic computing concepts of the UNIX operating system, relational databases, structured programming, object-oriented programming, and the Internet. Included is an introduction to SQL and the Pythonl scripting language. The course emphasizes relevance to molecular biology and bioinformatics. It is intended for students with no computer programming background but with a solid knowledge of molecular biology. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology. S

    Technology Fee: $200.00

    410.635.81 - Bioinformatics:Tools for Genome Analysis

    Sajung Yun
    Sijung Yun

    Online 9/4 - 12/17

    Large-scale DNA sequencing efforts have resulted in increasingly large numbers of DNA sequences being deposited in public databases. Assigning annotations, such as exon boundaries, repeat regions, and other biologically relevant information, accurately in the feature tables of these sequences requires a significant amount of human intervention. This course instructs students on computer analytical methods for gene identification, promoter analysis, and introductory gene expression analysis using software methods. Additionally, students are introduced to comparative genomics and proteomic analysis methods. Students will become proficient in annotating large genomic DNA sequences. This course covers customizing genome browsers with novel data. Next-generation sequence analysis is covered, through sequence quality control and assembly and analysis of ChIP-seq and RNA-seq data. Students complete two large sequence analysis projects during the course. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.633 Introduction to Bioinformatics or equivalent. S

    Technology Fee: $200.00

    410.635.82 - Bioinformatics:Tools for Genome Analysis

    Sajung Yun
    Sijung Yun

    Online 9/4 - 12/17

    Large-scale DNA sequencing efforts have resulted in increasingly large numbers of DNA sequences being deposited in public databases. Assigning annotations, such as exon boundaries, repeat regions, and other biologically relevant information, accurately in the feature tables of these sequences requires a significant amount of human intervention. This course instructs students on computer analytical methods for gene identification, promoter analysis, and introductory gene expression analysis using software methods. Additionally, students are introduced to comparative genomics and proteomic analysis methods. Students will become proficient in annotating large genomic DNA sequences. This course covers customizing genome browsers with novel data. Next-generation sequence analysis is covered, through sequence quality control and assembly and analysis of ChIP-seq and RNA-seq data. Students complete two large sequence analysis projects during the course. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.633 Introduction to Bioinformatics or equivalent. S

    Technology Fee: $200.00

    410.639.81 - Protein Bioinformatics

    Frank Lebeda
    Mark Olson

    Online 9/4 - 12/17

    Because the gap between the number of protein sequences the number of protein crystal structures continues to expand protein structural predictions are increasingly important. This course provides a working knowledge of various computer- based tools available for predicting the structure and function of proteins. Topics include protein database searching, protein physicochemical properties, secondary structure prediction, a statistical verification. Also covered are graphic visualization the different types of three-dimensional folds and predicting 3-D structures by homology. Computer laboratories complement material presented in lectures. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.633 Introduction to Bioinformatics. S

    Technology Fee: $200.00

    410.643.81 - Managing and Leading Biotechnology Professionals

    Lynn Johnson Langer

    Online 9/4 - 12/17

    The roles of managers and leaders within biotechnology companies undergo constant change. Biotechnology manager and leaders must engage in new and innovative problem- solving strategies; lead a diverse and global workforce; develop partnerships with other businesses, customers, and competitors manage horizontally and across teams; and utilize technology a competitive advantage. The student is able to address cure challenges in his/her own organization and learn methods of implementing change, such as negotiation techniques and motivation. The course includes in-depth discussions of leadership skills, communication, conflict resolution, and goa integration. Students research a biotechnology organization, analyze what is working and not working within the management systems, and suggest alternatives.

    Technology Fee: $200.00

    410.643.82 - Managing and Leading Biotechnology Professionals

    Bonnie Robeson

    Online 9/4 - 12/17

    The roles of managers and leaders within biotechnology companies undergo constant change. Biotechnology manager and leaders must engage in new and innovative problem- solving strategies; lead a diverse and global workforce; develop partnerships with other businesses, customers, and competitors manage horizontally and across teams; and utilize technology a competitive advantage. The student is able to address cure challenges in his/her own organization and learn methods of implementing change, such as negotiation techniques and motivation. The course includes in-depth discussions of leadership skills, communication, conflict resolution, and goa integration. Students research a biotechnology organization, analyze what is working and not working within the management systems, and suggest alternatives.

    Technology Fee: $200.00

    410.644.81 - Marketing Aspects of Biotechnology

    Phillip Farmer

    Online 9/4 - 12/17

    This course introduces students to the strategic and tactical approaches used in the marketing of biotechnological produce and services. Students gain a thorough understanding of the research and planning necessary to develop a marketing plan the relationship between the marketing and sales functions, the difference between marketing a scientific product and a scientific service, pricing strategies, distribution alternatives, communications, promotion, and the importance of perception Knowledge of marketing terminology and techniques prove helpful to anyone in the industry.

    Technology Fee: $200.00

    410.645.81 - Biostatistics

    William McCarthy

    Online 9/4 - 12/17

    This course introduces statistical concepts and analytical methods as applied to data encountered in biotechnology and biomedical sciences. It emphasizes the basic concepts of experimental design, quantitative analysis of data, and statistical inferences. Topics include probability theory and distributions; population parameters and their sample estimates; descriptive statistics for central tendency and dispersion; hypothesis testing and confidence intervals for means, variances, and proportions; categorical data analysis; linear correlation and regression model; logistic regression; analysis of variance; and nonparametric methods. The course provides students a foundation to evaluate information critically to support research objectives and product claims and a better understanding of statistical design of experimental trials for biological products/devices. Prerequisites: Basic mathematics (algebra). S

    Technology Fee: $200.00

    410.645.82 - Biostatistics

    William McCarthy

    Online 9/4 - 12/17

    This course introduces statistical concepts and analytical methods as applied to data encountered in biotechnology and biomedical sciences. It emphasizes the basic concepts of experimental design, quantitative analysis of data, and statistical inferences. Topics include probability theory and distributions; population parameters and their sample estimates; descriptive statistics for central tendency and dispersion; hypothesis testing and confidence intervals for means, variances, and proportions; categorical data analysis; linear correlation and regression model; logistic regression; analysis of variance; and nonparametric methods. The course provides students a foundation to evaluate information critically to support research objectives and product claims and a better understanding of statistical design of experimental trials for biological products/devices. Prerequisites: Basic mathematics (algebra). S

    Technology Fee: $200.00

    410.649.81 - Introduction to Regulatory Affairs

    Susan Zecchini

    Online 9/4 - 12/17

    Regulatory affairs comprise the rules and regulations govern product development and post-approval marketing. In the U.S. the FDA establishes and oversees the applicable regulations under several statutes, many regulations, and partnership with legislators, patients, and customers. Biotechnology products may be classified as drugs, biologics, or medical devices. Each type is regulated by a different center within the FDA. This course provides an overview of RA and its effect on product development. Topics include RA history, regulatory agencies, how to access regulatory information, drug submissions, biologics submissions, medical device submissions, GLP, GCP, GMP, and FDA inspections.

    Technology Fee: $200.00

    410.649.82 - Introduction to Regulatory Affairs

    Suzanne Fitzpatrick

    Online 9/4 - 12/17

    Regulatory affairs comprise the rules and regulations govern product development and post-approval marketing. In the U.S. the FDA establishes and oversees the applicable regulations under several statutes, many regulations, and partnership with legislators, patients, and customers. Biotechnology products may be classified as drugs, biologics, or medical devices. Each type is regulated by a different center within the FDA. This course provides an overview of RA and its effect on product development. Topics include RA history, regulatory agencies, how to access regulatory information, drug submissions, biologics submissions, medical device submissions, GLP, GCP, GMP, and FDA inspections.

    Technology Fee: $200.00

    410.649.83 - Introduction to Regulatory Affairs

    Suzanne Fitzpatrick

    Online 9/4 - 12/17

    Regulatory affairs comprise the rules and regulations govern product development and post-approval marketing. In the U.S. the FDA establishes and oversees the applicable regulations under several statutes, many regulations, and partnership with legislators, patients, and customers. Biotechnology products may be classified as drugs, biologics, or medical devices. Each type is regulated by a different center within the FDA. This course provides an overview of RA and its effect on product development. Topics include RA history, regulatory agencies, how to access regulatory information, drug submissions, biologics submissions, medical device submissions, GLP, GCP, GMP, and FDA inspections.

    Technology Fee: $200.00

    410.651.81 - Clinical Development of Drugs and Biologics

    Bharat Khurana

    Online 9/4 - 12/17

    This course introduces students to the planning and work required to develop potential new drugs and biologics efficiently. Students gain a thorough appreciation of FDA and International Council for Harmonisation regulations and guidelines. Because the course emphasizes the importance of planning before the execution of any of the necessary steps, lectures use a “backward” approach, discussing the final analysis and report before developing protocols. Topics also include an overview of preclinical investigations; NDA/BLA format and content; clinical development plans; product and assay development; the IND; and trial design, implementation, and management. Prerequisites: 410.303 Foundations of Bioscience OR 410.601 Biochemistry and 410.603 Advanced Cell Biology OR admission to the MS in Regulatory Science Program OR Master of Biotechnology Enterprise and Entrepreneurship programs. S

    Technology Fee: $200.00

    410.651.82 - Clinical Development of Drugs and Biologics

    Christopher Breder

    Online 9/4 - 12/17

    This course introduces students to the planning and work required to develop potential new drugs and biologics efficiently. Students gain a thorough appreciation of FDA and International Council for Harmonisation regulations and guidelines. Because the course emphasizes the importance of planning before the execution of any of the necessary steps, lectures use a “backward” approach, discussing the final analysis and report before developing protocols. Topics also include an overview of preclinical investigations; NDA/BLA format and content; clinical development plans; product and assay development; the IND; and trial design, implementation, and management. Prerequisites: 410.303 Foundations of Bioscience OR 410.601 Biochemistry and 410.603 Advanced Cell Biology OR admission to the MS in Regulatory Science Program OR Master of Biotechnology Enterprise and Entrepreneurship programs. S

    Technology Fee: $200.00

    410.651.83 - Clinical Development of Drugs and Biologics

    Bharat Khurana

    Online 9/4 - 12/17

    This course introduces students to the planning and work required to develop potential new drugs and biologics efficiently. Students gain a thorough appreciation of FDA and International Council for Harmonisation regulations and guidelines. Because the course emphasizes the importance of planning before the execution of any of the necessary steps, lectures use a “backward” approach, discussing the final analysis and report before developing protocols. Topics also include an overview of preclinical investigations; NDA/BLA format and content; clinical development plans; product and assay development; the IND; and trial design, implementation, and management. Prerequisites: 410.303 Foundations of Bioscience OR 410.601 Biochemistry and 410.603 Advanced Cell Biology OR admission to the MS in Regulatory Science Program OR Master of Biotechnology Enterprise and Entrepreneurship programs. S

    Technology Fee: $200.00

    410.653.81 - Regenerative Medicine: from Bench to Bedside

    Jamie Austin

    Online 9/4 - 12/17

    Regenerative Medicine is a multidisciplinary field developing next-generation therapies that aim to augment, repair, replace or regenerate tissues and organs. This field can be broadly defined by three overlapping technology domains: cell therapy, gene therapy and tissue engineering. In this course, we will explore these regenerative medicines from bench to bedside. We will discuss relevant biological, engineering, clinical, legal, regulatory and ethical principles and perspectives to understand the emerging field of regenerative medicine. Specific topics include induced pluripotent stem cells, bioartificial organs, cell-based immunotherapy, and gene editing techniques such as a CRISPR/Cas-9. In addition to gaining a scientific foundation, students will become familiar with the current state of the industry and the process of bringing these regenerative medicine products to market, including market trends and opportunities, process development and manufacturing, and commercialization challenges and successes. Readings will be drawn primarily from scientific journals. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I. S

    Technology Fee: $200.00

    410.653.82 - Regenerative Medicine: from Bench to Bedside

    Jamie Austin

    Online 9/4 - 12/17

    Regenerative Medicine is a multidisciplinary field developing next-generation therapies that aim to augment, repair, replace or regenerate tissues and organs. This field can be broadly defined by three overlapping technology domains: cell therapy, gene therapy and tissue engineering. In this course, we will explore these regenerative medicines from bench to bedside. We will discuss relevant biological, engineering, clinical, legal, regulatory and ethical principles and perspectives to understand the emerging field of regenerative medicine. Specific topics include induced pluripotent stem cells, bioartificial organs, cell-based immunotherapy, and gene editing techniques such as a CRISPR/Cas-9. In addition to gaining a scientific foundation, students will become familiar with the current state of the industry and the process of bringing these regenerative medicine products to market, including market trends and opportunities, process development and manufacturing, and commercialization challenges and successes. Readings will be drawn primarily from scientific journals. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I. S

    Technology Fee: $200.00

    410.671.81 - Gene Expression Data Analysis and Visualization

    Brandon Higgs

    Online 9/4 - 12/17

    This course will introduce students to various methods for analyzing and interpreting transcriptomics data generated from technologies such as oligonucleotide or two-channel microarrays, qRT-PCR, and RNA sequencing. Topics will include scaling/normalization, outlier analysis, and missing value imputation. Students will learn how to identify differentially expressed genes and correlate their expression with clinical outcomes such as disease activity or survival with relevant statistical tests; methods to control for multiple testing will also be presented. An introduction to linear and nonlinear dimensionality reduction methods and both supervised and unsupervised clustering and classification approaches will be provided. Open source tools and databases for biological interpretation of results will be introduced. Assignments and concepts will make use of publicly available datasets and students will compute and visualize results using the statistical software R. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.645 Biostatistics, 410.634 Practical Computer Concepts for Bioinformatics, or an undergraduate computer programming course. S

    Technology Fee: $200.00

    410.671.82 - Gene Expression Data Analysis and Visualization

    Brandon Higgs

    Online 9/4 - 12/17

    This course will introduce students to various methods for analyzing and interpreting transcriptomics data generated from technologies such as oligonucleotide or two-channel microarrays, qRT-PCR, and RNA sequencing. Topics will include scaling/normalization, outlier analysis, and missing value imputation. Students will learn how to identify differentially expressed genes and correlate their expression with clinical outcomes such as disease activity or survival with relevant statistical tests; methods to control for multiple testing will also be presented. An introduction to linear and nonlinear dimensionality reduction methods and both supervised and unsupervised clustering and classification approaches will be provided. Open source tools and databases for biological interpretation of results will be introduced. Assignments and concepts will make use of publicly available datasets and students will compute and visualize results using the statistical software R. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.645 Biostatistics, 410.634 Practical Computer Concepts for Bioinformatics, or an undergraduate computer programming course. S

    Technology Fee: $200.00

    410.671.83 - Gene Expression Data Analysis and Visualization

    Brandon Higgs

    Online 9/4 - 12/17

    This course will introduce students to various methods for analyzing and interpreting transcriptomics data generated from technologies such as oligonucleotide or two-channel microarrays, qRT-PCR, and RNA sequencing. Topics will include scaling/normalization, outlier analysis, and missing value imputation. Students will learn how to identify differentially expressed genes and correlate their expression with clinical outcomes such as disease activity or survival with relevant statistical tests; methods to control for multiple testing will also be presented. An introduction to linear and nonlinear dimensionality reduction methods and both supervised and unsupervised clustering and classification approaches will be provided. Open source tools and databases for biological interpretation of results will be introduced. Assignments and concepts will make use of publicly available datasets and students will compute and visualize results using the statistical software R. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.645 Biostatistics, 410.634 Practical Computer Concepts for Bioinformatics, or an undergraduate computer programming course. S

    Technology Fee: $200.00

    410.673.81 - Biological Processes in Regulatory Affairs

    Michael Manning

    Online 9/4 - 12/17

    This course provides an overview of the biological processes laboratory techniques utilized for the discovery, development and evaluation of therapeutic drugs. Students investigate drug development processes, such as gene cloning, culture scale-u downstream processing, and product purification. Emphasis is placed on the theory and application of laboratory methods u in drug development, such as recombinant DNA techniques, antibody technology, protein purification, immunoassays, high throughput drug screening, chromatography, electrophoresis cell receptor characterization, pharmacokinetics, drug toxicity testing and evaluation of therapeutic drugs, diagnostics, and vaccines. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology OR admissions to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs. S

    Technology Fee: $200.00

    410.673.82 - Biological Processes in Regulatory Affairs

    Markus Yap

    Online 9/4 - 12/17

    This course provides an overview of the biological processes laboratory techniques utilized for the discovery, development and evaluation of therapeutic drugs. Students investigate drug development processes, such as gene cloning, culture scale-u downstream processing, and product purification. Emphasis is placed on the theory and application of laboratory methods u in drug development, such as recombinant DNA techniques, antibody technology, protein purification, immunoassays, high throughput drug screening, chromatography, electrophoresis cell receptor characterization, pharmacokinetics, drug toxicity testing and evaluation of therapeutic drugs, diagnostics, and vaccines. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology OR admissions to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs. S

    Technology Fee: $200.00

    410.675.81 - International Regulatory Affairs

    Jonathan Helfgott
    Emil Wang

    Online 9/4 - 12/17

    Pharmaceutical/biotechnology product approval and marketing requires a good understanding of international regulatory affairs in order to successfully compete in today’s global marketplace. It is important for tomorrow’s leaders to understand and follow the regulatory differences to ensure optimum product development strategies, regulatory approvals, and designs for exports conforming to the foreign regulatory bodies. There are various product development strategies that industry is using to shorten the product development time by conducting preclinical programs outside the U.S., but the strategy requires careful planning and interaction with the U.S. and foreign regulatory agencies. With the increase in globalization of economy and exports, international regulations will have a bigger impact on the biotechnology business in the future. The course provides a review and analysis of the pharmaceutical/biotechnology product approval processes within the world’s major markets. The key strategies required in preclinical product development to marketing approval of the products in Europe, Japan, and the U.S. will be compared and discussed. Students will explore the European Union regulations and their overall importance on international markets. The course will cover the salient features of common technical and regulatory documents required for submission and approval to the leading regulatory bodies in the world, general guidance documents, international harmonization, and the General Agreement on Tariffs and Trade.

    Technology Fee: $200.00

    410.676.81 - Food And Drug Law

    Loretta Chi

    Online 9/4 - 12/17

    The Food, Drug, and Cosmetic Act governs the regulatory approval process for bringing a drug, biologic, medical device, food, or cosmetic to market. The class will discuss administrative procedures followed by the FDA. The course includes an overview of the drug, biologic, and medical device approval processes, and the regulation of food and dietary supplements. Students then will be exposed to the enforcement activities of the FDA, including searches, seizure actions, injunctions, criminal prosecutions, and civil penalties authorized under the FD&C Act, as well as other statutes, like the Public Health Service Act which regulates the development and approval of biologics.

    Technology Fee: $200.00

    410.676.82 - Food And Drug Law

    Emil Wang

    Online 9/4 - 12/17

    The Food, Drug, and Cosmetic Act governs the regulatory approval process for bringing a drug, biologic, medical device, food, or cosmetic to market. The class will discuss administrative procedures followed by the FDA. The course includes an overview of the drug, biologic, and medical device approval processes, and the regulation of food and dietary supplements. Students then will be exposed to the enforcement activities of the FDA, including searches, seizure actions, injunctions, criminal prosecutions, and civil penalties authorized under the FD&C Act, as well as other statutes, like the Public Health Service Act which regulates the development and approval of biologics.

    Technology Fee: $200.00

    410.679.81 - Practicum in Regulatory Science

    Thomas Colonna

    Online 9/4 - 12/17

    This integrative, case-based course will focus on applying knowledge gained from previous courses in the Master of Science in Regulatory Science program to actual cases from the FDA. For each case, students will assume the role of regulatory specialist, an FDA reviewer or senior-level policy-maker, or other involved stakeholders, such as a consumer group or an advocacy group. Students will be expected to research, evaluate, and present scientifically and legally justifiable positions on case studies from the perspective of their assigned roles. Students will present their perspectives to the class and be asked to debate the issues with the other students from the perspective of their assigned roles. The major responsibility of the students in this course will be to make scientifically and legally defensible recommendations and to justify them through oral and written communication. Please note this course is only open to students in the Master of Science in Regulatory Science and should only be taken after all required courses are completed.

    Technology Fee: $200.00

    410.680.81 - Finance for Biotechnology

    Anthony Schwartz

    Online 9/4 - 12/17

    Students will build an understanding of the basics of contemporary global monetary systems and the essentials of financial management. This course will include a means to develop a working knowledge of the critical financial factors for decision-makers from the perspectives of key stakeholders. The syllabus is designed to provide students with limited or no background in finance an opportunity to establish a means to understand financial basics and communicate clearly in financial terms when conducting business. This course is uniquely designed to meet the current needs of those leading the global life science industry.  S

    Technology Fee: $200.00

    410.682.81 - Validation in Biotechnology

    Jonathan Helfgott

    Online 9/4 - 12/17

    Understanding validation and applying a comprehensive validation philosophy are essential in today’s biotechnology industry. First and foremost, validation allows a company to operate in compliance with the regulations and guidance set forth by FDA. Perhaps more importantly, it results in equipment assays and processes that are well-understood and robust, less prone to failure, and more cost-effective. This course will introduce the fundamentals of validation, validation master planning, resource management, types of validation and the associated documentation, departmental roles and interaction and the differences between commissioning and validation. Students will have an opportunity to solve real-world problems generate actual validation documents, and develop validation program elements that balance regulatory requirements, operational needs, and business expectations.

    Technology Fee: $200.00

    410.683.81 - Introduction to cGMP Compliance

    Nancy Karaszkiewicz

    Online 9/4 - 12/17

    Current Good Manufacturing Practice regulations are the minimum standards for the design, production, and distribute of drugs, biologics, and medical devices in the U.S. and internationally. In the U.S., they are codified at the federal level, in the FD&C Act and the Code of Federal Regulations, and actively enforced by FDA. These regulations, however, only begin to describe the practices used in the pharmaceutic and biotech industries. Additional sources of insight and guidance include the FDA’s guidance documents and training manuals, industry trade publications, international compendia and standards-setting organizations. Students will learn the scope and history of the regulations, industry-standard implementation strategies and “best-practices” approaches, and the FDA’s current expectations. Students will also learn to apply practical solutions to the regulatory issues faced in the pharmaceutical and biotech industries today.

    Technology Fee: $200.00

    410.683.82 - Introduction to cGMP Compliance

    William Roderick Freeman

    Online 9/4 - 12/17

    Current Good Manufacturing Practice regulations are the minimum standards for the design, production, and distribute of drugs, biologics, and medical devices in the U.S. and internationally. In the U.S., they are codified at the federal level, in the FD&C Act and the Code of Federal Regulations, and actively enforced by FDA. These regulations, however, only begin to describe the practices used in the pharmaceutic and biotech industries. Additional sources of insight and guidance include the FDA’s guidance documents and training manuals, industry trade publications, international compendia and standards-setting organizations. Students will learn the scope and history of the regulations, industry-standard implementation strategies and “best-practices” approaches, and the FDA’s current expectations. Students will also learn to apply practical solutions to the regulatory issues faced in the pharmaceutical and biotech industries today.

    Technology Fee: $200.00

    410.684.81 - Technology Transfer & Commercialization

    Concetta Dudley

    Online 9/4 - 12/17

    This course is an introduction to the multidisciplinary aspect involved in the process of translating innovations in technology into commercial use, particularly research discoveries emanating from universities and other nonprofit organization.

    Technology Fee: $200.00

    410.687.81 - Ethical,Legal & Regulatory Aspects of the Biotechnology Enterprise

    Concetta Dudley

    Online 9/4 - 12/17

    This course provides an overview of the important ethical, legal, and regulatory issues that are critical to the biotechnology industry. The course shares current trends and essential elements of ethics, legal issues, and regulations in a way that allows for an appreciation of how each influences the others.

    Students will examine core ethical values that guide the practice of science in the biotechnology industry. The course will provide an overview of legal issues, such as protecting inventions and intellectual property and licensing, and the range of regulatory oversight mechanisms with which the biotech industry must comply. This course will review the implications of strategic ethical, legal, and regulatory choices that add value to the biotechnology firm, customers, and society.

    Technology Fee: $200.00

    410.689.81 - Leading Change in Biotechnology

    Amita Shukla

    Online 9/4 - 12/17

    As bioscience companies grow and mature, leadership needs to evolve. Students will learn how to identify their company’s position in the “Leadership Life Cycle” and learn how to select the right leadership capabilities based on their current organizational needs. Research shows that the right leaders at the right time dramatically improve organizational success. Discussions will address the leadership needs of organizations from early-stage, research-based companies through fully integrated biopharmaceuticals. General leadership practices and strategies, moving ideas from research bench to the consumer, and strategies to prevent failure will all be discussed.

    Technology Fee: $200.00

    410.699.81 - Nanobiotechnology

    Michael Mauk

    Online 9/4 - 12/17

    The emerging field of nanobiotechnology utilizes developments in nanotechnology and molecular biology for applications to biomedical science and clinical practice, as well as fundamental cell biology research and industrial biotechnology. Nanobiotechnology is an interdisciplinary field that exploits the unique functional properties of natural and synthetic biomolecular-sized (nanometer-scale) constructs, such as quantum dots, carbon nanotubes, nanostructured surfaces, liposomes, artificial membranes, and molecular machines for biotechnology and medicine. This course is designed for biotechnology majors and will survey the research, development, and applications of nanotechnology to medical diagnostics, imaging, and therapeutics (including drug delivery and anti-cancer treatments); cell biology and single-cell analysis; nanofluidics; bioassays; biosensors; and bio-inspired engineering. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I. S

    Technology Fee: $200.00

    410.700.81 - Food Labeling and Packaging Regulations

    Jesse Zuehlke

    Online 9/4 - 12/17

    The Nutrition Labeling and Education Act of 1990, which amended the FD&C Act, requires most foods to bear nutrition labeling and requires food labels that bear nutrient content claims and certain health messages to comply with specific requirements. The NLEA and the final regulations to implement the NLEA provide for a number of fundamental changes in how food is labeled, including requiring that nutrition labeling be placed on most foods, requiring that terms that characterize the level of nutrients in a food be used in accordance with definitions established by the FDA, and providing for the use of claims about the relationship between nutrients and diseases or health-related conditions. These changes apply to virtually all foods in the food supply, including, in large measure, to foods sold in restaurants. Food labeling is required for most prepared foods, such as breads, cereals, canned and frozen foods, snacks, desserts, drinks, etc. Nutrition labeling for raw produce (fruits and vegetables) and fish is voluntary.

    Technology Fee: $200.00

    410.703.81 - Strategic Planning for the Biotechnology Enterprise

    Reid Adler

    Online 9/4 - 12/17

    This course is an overview of the strategic planning process of a biotechnology enterprise. It focuses on creating value through strategy formulation and implementation. Topics covered include leadership and technology competencies, performance indicators, intellectual property, corporate governance, regulatory strategy, and appropriating value. The thesis of the course is that effective strategic planning and implementation is critical to success, and that it provides a valuable, structured process to create enterprise value and manage business risks. Best practices in strategic planning and managing the planning process are also provided.

    Technology Fee: $200.00

    410.709.81 - Cancer Genomics

    Meredith Safford

    Online 9/4 - 12/17

    Alterations to the genome are the basis of cancer development, but not all mutations cause cancer. Cancer genomics is the study of cancer cell genomes to elucidate how changes from the normal host genome drive cancer development, and how these changes can be targeted for better prevention, diagnosis and treatment of cancer. In this course, students learn about the multi-step process of tumorigenesis and the confounding development of passenger mutations that challenge the use of genomics to inform therapies. Students will use bioinformatics tools to analyze human cancer genomic data sets to understand the genetic basis of cancer and how to identify genetic signatures in tumors to guide treatment. Topics also include the development of drug resistance, biological sample acquisition, the technologies used to identify and distinguish pathogenic alleles, and how data is stored, referenced, and shared. Discussions about clinical trials and standards of care based on cancer genomics, and about the ethical challenges raised by the use of genomic information to make personal care decisions, are included in the course. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cellular Biology I. 410.638 Cancer Biology is recommended.

    Technology Fee: $200.00

    410.712.81 - Advanced Practical Computer Concepts for Bioinformatics

    Joshua Orvis

    Online 9/4 - 12/17

    This intermediate-to-advanced-level course, intended as a follow-on to 410.634 Practical Computer Concepts for Bioinformatics (a prerequisite for this new class), will integrate and expand on the concepts from that introductory class to allow students to create working, Web-based bioinformatics applications in a project-based course format. After a review of the concepts covered in 410.634, students will learn how to create functional Web applications on a UNIX system, using Python and CGI to create forms that can be acted upon, and using the Perl DBI module to interface with MySQL relational databases that they will create and populate to retrieve and present information. This will be demonstrated by building an in-class, instructor-led project. More advanced SQL concepts and database modeling will also be covered, as well as introductions to HTML5, CSS3, and Javascript/JQuery. Class time in the latter weeks of the class will be devoted to individual assistance on student projects and to short lectures on advanced topics. Once again, whenever possible, this course will emphasize relevance to solving problems in molecular biology and bioinformatics. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.634 Practical Computer Concepts. S

    Technology Fee: $200.00

    410.715.81 - Medical Device Regulation

    David Locke

    Online 9/4 - 12/17

    This course provides a comprehensive introduction to medical devices and how they are regulated by the FDA. Topics that w be covered include an overview of the laws and regulations that govern medical devices, the FDA’s organizational structure and responsibilities for medical device regulation, and administrative and legal requirements for medical devices throughout the full product life cycle. Particular focus will be placed on the premarket review, post-market programs enforcement (e.g., Quality Systems Regulation, and FDA inspectional programs). Included will be discussions on the responsible offices and major program requirements and resources. Students will be given various case studies to examine the application of regulations, and participate in a 510(k)/PMA workshop, mock inspectional audit, and a mock enforcement action. Upon completion of this course, the student will have a working knowledge of the requirements a policies of FDA regulation of medical devices.

    Technology Fee: $200.00

    410.717.81 - Risk Assessment and Management

    Calvin Chue
    Judy Van Nguyen

    Online 9/4 - 12/17

    Risk analysis is composed of three separate but integrated elements, namely risk assessment, risk management and risk communication. Risk communication is an interactive process of exchange of information and opinion on risk among risk assessors, risk managers, and other interested parties. Risk management is the process of weighing policy alternatives in the light of the results of risk assessment and, if required, selecting and implementing appropriate control options, including regulatory measures. Students will learn how to integrate risk assessment, risk management, and risk communication using case studies.

    Technology Fee: $200.00

    410.718.81 - Food Safety Audits and Surveillance

    Kantha Shelke

    Online 9/4 - 12/17

    Food safety audits provide a credible verification system to the entire food processing industry including retail environment meat, fish, and poultry, vegetable and produce suppliers. Having a HACCP plan in place is often a first step to a successful food safety program, but is not entirely enough to ensure that food safety standards are being adhered to on a consistent basis. In this course, students will learn how to adequately plan for a food crisis situation.

    Technology Fee: $200.00

    410.727.81 - Regulatory Strategies in Biopharmaceuticals

    Bharat Khurana

    Online 9/4 - 12/17

    Given the costly drug development process and the limited resources of emerging biopharmaceutical companies, developing an eGiven the costly drug development process and the limited resources of emerging biopharmaceutical companies, developing an early regulatory strategy-starting well before clinical trials are initiated is extremely important for the success of a company. This course will discuss different regulatory strategies that several players of the U.S. biopharmaceutical industry have employed. Students will learn about interacting with regulatory agencies, the orphan drug development, accelerated approval, fast track, priority review, and other regulatory mechanisms, pharmacogenomics and biomarkers, adaptive clinical trials, animal rule, generic drug development and biosimilar. Using case studies, the impact of these regulatory strategies on drug development, and how these strategies have helped many biopharmaceutical companies will be discussed. At the end of this course, students will better understand federal regulations and the aspects involved in developing efficient regulatory strategies.arly regulatory strategy- starting well before clinical trials are initiated, is extremely important for the success of a company. This course will discuss different regulatory strategies that several players of the U.S. biopharmaceutical industry have employed. Students will learn about interacting with regulatory agencies, the orphan drug development, accelerated approval, fast track, priority review, and other regulatory mechanisms, pharmacogenomics and biomarkers, adaptive clinical trials, animal rule, generic drug development and biosimilars. Using case studies, the impact of these regulatory strategies on drug development and how these strategies have helped many biopharmaceutical companies will be discussed. At the end of this course, students will better understand federal regulations and the aspects involved in developing efficient regulatory strategies.

    Technology Fee: $200.00

    410.732.81 - Funding a New Venture

    Norman Marcus

    Online 9/4 - 12/17

    In this course, we study the nuts and bolts of putting together a new company and explore financial markets and the economics of life science companies. The course includes weekly discussions based upon textbook and outside reading materials; the latter are often topical and speak to the issues of the day, and how they may affect investor’s confidence and funding. Video presentations on the part of all students are required. We will examine the roles of corporate officers and the venture community. The students will learn what makes the startup process both attractive and difficult, and will work through that process in a realistic manner.

    Technology Fee: $200.00

    410.734.81 - Practical Introduction to Metagenomics

    Joshua Orvis

    Online 9/4 - 12/17

    The emerging field of metagenomics allows for the study of entire communities of microorganisms at once, with far- reaching applications in a wide array of fields, such as medicine, agriculture, and bioremediation. Students will learn the principles of metagenomics through exploration of published project data and guided readings of recent literature. Using d from the Human Microbiome Project, students will explore practical analysis tasks, including sequence assembly, gene prediction and annotation, metabolic reconstruction, taxonomic community profiling, and more. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.633 Introduction to Bioinformatics, 410.634 Practical Computer Concepts for Bioinformatics. S

    Technology Fee: $200.00

    410.736.81 - Genomic and Personalized Medicine

    Beatrice Kondo

    Online 9/4 - 12/17

    With the advent of rapid, low-cost whole genome sequencing, the field of personalized medicine is growing from a niche field, to becoming the new standard of practice in medicine. Already, oncology makes use of genomic sequencing to inform treatment decisions based on tumor types, and patients are seeking knowledge about their genetic and environmental risk factors to make informed health decisions. This class explores the evolving field of personalized medicine, examining genomics, as well as proteomics, metabolomics, epigenetics, and the microbiome. Students will read and discuss new developments in pharmacogenomics, rare and complex diseases, genomics for the healthy person, and the ethical, economic, and social implications of these new technologies. These topics will be approached with a view toward application in clinical practice. Prerequisites: 410.602 Molecular Biology; 410.633 Introduction to Bioinformatics. S

    Technology Fee: $200.00

    410.753.81 - Stem Cell Biology

    Lisa Selbie

    Online 9/4 - 12/17

    This course will involve discussion and debate on current topics concerning stem cell biology and the use of stem cells in biotechnology and therapeutics. Topics will include review and discussion of developmental and cell biology, stem cell characteristics, stem cell preparation and therapeutic uses, tissue engineering, global regulatory and ethical issues, and commercialization of stem cell therapy. Current peer-reviewed literature and guest experts in the field will provide up-to-date information for discussion. Prerequisites: 410.601 Biochemistry, 410.602 Molecule Biology, 410.603 Advanced Cell Biology I, 410.604 Advanced Cell Biology II. S

    Technology Fee: $200.00

    410.777.81 - Next Generation Alternative Energies

    Sherry Ogg

    Online 9/4 - 12/17

    In this course, students are introduced to the current technologies used in the production of alternative energies. These technologies include first and second generation biomass biofuels, carbon-neutral synthetic fuels, microbial fuel cells, algae fuel, and biological hydrogen production. The study of biomass biofuels will include technologies using agriculture, cellulosic, and waste feedstocks. Carbon-neutral synthetic fuels will include biobutanol, acetone-butanol-ethanol, methane, and biogas. Students will study the methods used to produce these types of fuels, the by-products produced, and the sustainability of energy production. In addition, to studying the techniques used to produce alternative energy, students will also discuss the economic and environmental impacts of producing and using alternative sources to produce energy. Prerequisites: 410.601 Biochemistry, 410.602 Molecule Biology, 410.603 Advanced Cell Biology I.

    Technology Fee: $200.00

    410.799.81 - Current Topics in Regulatory Policy

    Michael Marcarelli

    Online 9/4 - 12/17

    The ability to successfully navigate the intersections of law, regulation, guidance, and policy has never been more critical to the success of entities engaged in the medical product development and commercial marketing. The entities that make up this industry are very sophisticated in their abilities to innovate at a blazing speed. In contrast, regulators must us a regulatory model that evolves and adapts much slower than their industry counterparts. As a result, regulators are relying more heavily on policy to drive their strategy, actions, and outcomes. Therefore, a clear understanding of regulatory policy is an essential consideration for individuals engaged in the medical product development industry.

    This course provides introduction into several key areas of government regulatory policy (both old and new) and regulatory science. The topics covered in this course will serve as a road map for students who want to successfully navigate within this complex and change regulatory model.

    Technology Fee: $200.00

    410.802.81 - Independent Studies in Regulatory Science

    Thomas Colonna

    Online 9/4 - 12/17

    This course is open only to students in the MS in Regulatory Science program or the MS in Biotechnology with a concentration in Regulatory Affairs and may be taken only after the student has completed 5 courses and has compiled a strong academic record. Prior to proposing a project, interested students must have identified a study topic and a mentor who is familiar with their prospective inquiry and who is willing to provide guidance and oversee the project. The study project must be independent of current work-related responsibilities as determined by the project mentor. The mentor may be a faculty member, a supervisor from the student's place of work, or any expert with appropriate credentials. The goal of the study project should be a "publishable" article. Students are required to submit a formal proposal for review and approval by the regulatory science program committee. The proposal must be received by the Advanced Academic Programs office no later than one month prior to the beginning of the term in which the student wants to enroll in the course. Students must interact with a member of the program committee periodically for discussion of the project's progress, and a written document must be completed and approved by the program committee and project mentor for the student to receive graduate credit. Additional guidelines can be obtained from the AAP administrative office.

    Technology Fee: $200.00

    410.804.81 - Practicum in Biotechnology Enterprise & Entrepreneurship

    Timothy Alcorn

    Online 9/4 - 12/17

    This course synthesizes the knowledge and skills acquired in the Masters of Biotechnology Enterprise and Entrepreneurship program, while offering a real-world examination of a bioscience organization and the issues it faces. Students will form interdisciplinary teams and work with faculty and industry professionals on an authentic and current project from a local bioscience public or private company, an entrepreneurial startup, or a nonprofit organization. This course is only open to students completing the Master of Biotechnology Enterprise and Entrepreneurship program.

    Technology Fee: $200.00

    410.806.81 - Independent Studies in Biotechnology Enterprise and Entrepreneurship

    Thomas Colonna

    Online 9/4 - 12/17

    This course is open only to students in the MBEE or the MS in Biotechnology with a concentration in Enterprise and may be taken only after the student has completed 5 courses and has compiled a strong academic record. Prior to proposing a project, interested students must have identified a study topic and a mentor who is familiar with their prospective inquiry and who is willing to provide guidance and oversee the project. The study project must be independent of current work-related responsibilities as determined by the project mentor. The mentor may be a faculty member, a supervisor from the student's place of work, or any expert with appropriate credentials. The goal of the study project should be a "publishable" article. Students are required to submit a formal proposal for review and approval by the enterprise/regulatory program committee. The proposal must be received by the Advanced Academic Programs office no later than one month prior to the beginning of the term in which the student wants to enroll in the course. Students must interact with a member of the program committee periodically for discussion of the project's progress, and a written document must be completed and approved by the program committee and project mentor for the student to receive graduate credit. Additional guidelines can be obtained from the AAP administrative office.?

    Technology Fee: $200.00