Section 1 Instructor, Course Information & Objectives

Instructor
Paul F. Kazyak pkazyak1@jhu.edu (I will respond to email communications within 24-48 hr)
Office: 628 Barnes Ave.
Westminster, MD 21157
Telephone: (443) 974-2846 (c)
Office Hours: by appointment

Course description
This course is part of Johns Hopkins Krieger School of Arts and Sciences (KSAS), Advanced Academic Programs (AAP) in the Environmental Sciences and Policy Program (ESP). The course examines the physical, chemical, and biological aspects of non-tidal freshwater ecosystems, with special emphasis on Maryland streams and rivers. Human impacts and restoration activities are also explored, and lecture topics are reinforced with extensive field experiences.

Course prerequisites
420.611 Principles and Methods of Ecology, equivalent course, or permission of instructor. It is recommended that the student offset their carbon from travel to and from ThorpeWood.

Course format
This course will be taught in a hybrid-intensive format during the summer 2018 session. The will commence on May 28 with online work. During June 8th to June 17th the class will convene at ThorpeWood (near Thurmont, MD) for the capstone field trip. The capstone trip will include multiple field experiences, lectures, guest lectures, discussions and a visit to the USGS National Science Center in Leetown WV. Food and lodging will be provided during the capstone field trip. Final course assignments, including a research paper and take-home final, are due on July 28th. The course will end at midnight on July 28th.

Course Learning Objectives

1. To become familiar with the hydrological, physical, chemical, and geomorphological processes that combine to form non-tidal waters in Maryland and elsewhere.
2. To become familiar with the major biological communities that live in Maryland's non-tidal waters, including adaptations for life in lotic and lentic environments, population dynamics, and biotic interactions.
3. To become familiar with pathways of energy transfer in non-tidal (particularly lotic)
systems.

4. To become familiar with general methods used to assess biotic communities and environmental conditions affecting those communities in non-tidal waters.
5. To become familiar with the impacts of human activities on freshwater ecosystems.
6. To become familiar with the various human uses of Maryland's freshwaters and current strategies for avoiding and minimizing human impacts to Maryland's aquatic systems.
7. To become familiar with the concepts of biodiversity and ecosystem management, as well as historical, ongoing and planned aquatic restoration activities in Maryland and elsewhere.

Section 2 Coarse Materials
Textbook
There is no required textbook for this course.

Other Readings
Required readings will be posted on the online classroom in Blackboard with support from JHU reserves

Required equipment for the capstone field experience
All students will need to bring chestwaders on the field trip (reminder: felt soles are illegal)

Specific Technology Requirements & Skills for this Course
For the online portion of this course, at a minimum, you need to be able to navigate in and use Blackboard; see the Blackboard Student Orientation course on your “My Institution” page.

Section 3 Course Overview and Goals
In this course, we will apply the principles of ecology as they relate to freshwater systems, and we will reinforce lecture material with first-hand experience in the field. Students will learn about and then see the effects of various human activities. Because literally everything ends up in the water, this course is valuable because the lessons learned are highly applicable to the challenges faced by humanity in reducing and ultimately reversing our environmental impact.

Course Topics, Activities and Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic/Event/Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 May</td>
<td>On-line course material and assignments available to students</td>
</tr>
<tr>
<td>2 June</td>
<td>Self-Introduction due by midnight</td>
</tr>
<tr>
<td>4 June</td>
<td>Response to other student introductions due by midnight</td>
</tr>
<tr>
<td>5 June</td>
<td>Introductory lecture discussion thread post due by midnight</td>
</tr>
</tbody>
</table>
7 June Response to other student posts on introductory lecture due by midnight

8 June-17 June EXTENDED FIELD TRIP (9AM on June 8 through noon on June 17th). MEETING LOCATION Homewood Campus in Baltimore, MD

Field visits: Buzzard Branch, unnamed tributary to Buzzard Branch, High Run, Homestead Pond, Beaver Run, unnamed tributary to Beaver Run, unnamed trib to Patapsco River, wetland adjacent to unnamed tributary, Albert Powell Hatchery, Catoctin Creek, Potomac River, Gwynns Falls, Sawmill Run, Little Patuxent River, USGS Leetown Science Center

18 July Take-home final made available

28 July Take-home final, observation project write-up and research paper due by midnight (electronic submittal)

What to Expect in this Course
This course is 2 months in length, with some online work prior to the capstone field trip, an 10 day field experience, and 4 weeks after the trip to complete and turn in course assignments. During the capstone field trip, the daily agenda will vary. Several days will be extended in length and class activity will be entirely off of the ThorpeWood property. In contrast, other days will be more lecture or lab-oriented. Free time will be scheduled, but students should not plan on doing extensive work on other courses during this course. Internet access is also very limited. Many meals will be catered and all food will be provided, but breakfast will be ‘on-your-own’ and students will be expected to pitch in with clean up after meals. Lodging will be in a rustic cabin with multiple students per room. However, those students that prefer can tent camp next to the cabin. The daily activities during the field trip will vary in intensity and type. On average, there will be about 2-3 hours of lecture each day, and ~5 hours of field experiences each day. Other activities will include group discussions/activities. Students are expected to participate in all scheduled activities.

Section 4 Assessments and Grading Policy

Course assignments
Assignments for this course will consist of: required readings, completion of an online lecture/discussion thread, posting a self-introduction/responding to posts from other students, a field observation project/write-up, a research paper, a laboratory practical and a take-home final exam.
Because of the condensed format for this course, on-line work and reading assignments are included to maximize learning and assimilation of the material. There will be three components of work to be completed prior to the capstone field trip: 1) a free-form “biography to introduce yourself to the class, 2) an on-line lecture and associated discussion thread and 3) required readings. After the capstone field trip, students will have until midnight on July 28th to submit the pre-approved research paper, the field observation write-up and the take-home final exam.

Course requirements
Your performance in this course will be evaluated in six ways: your participation in the self-introduction and online class discussion threads, your participation in class during the 10 day field trip (including discussion of required readings), the laboratory practical, your research paper, your field observation project write-up and the take-home final.

A) Completion of online assignments and discussion thread
For the online portion of the course, my expectation is that you fully engage in the self-introduction, complete the required readings and online lecture, and participate in the discussion thread. You will post your thoughts on the lecture and then respond to the thoughts of 2 other students within 24 hours after the initial posting deadline. All posts should be thoughtful and honest while respecting the views of others.

B) Class participation:
The level of engagement you put into this class will be a key determinant of your level of learning and success. My expectation is that you demonstrate fully empathetic listening while others are speaking and that you keep an open mind to the material being presented. I also encourage you to ask thoughtful, reflective questions so that we can collectively learn and grow as a group. Given the compressed nature of this course, attendance is necessary at all class meetings that are scheduled as part of the 11 day field trip.

C) Laboratory practical:
Students will be exposed to and tested on family-level identification of Maryland freshwater fishes and order-level identification of benthic macroinvertebrates. Extra credit will be given for fish correctly identified to species and the use of taxonomic keys will be allowed during the test.

D) Research paper:
Students will write an in-depth 14-20 page paper on a topic that is of particular interest to them and pre-approved by the instructor. The paper will involve choosing a current hot topic in freshwater ecology and/or restoration and synthesizing information on the topic, including seminal literature, the progression of knowledge, and resource management implications. All papers must have direct relevance to the field of non-tidal, freshwater ecology. It is highly recommended that students discuss their potential topic ideas with the instructor prior to investing time and energy in it. Additional guidance on the paper is provided later in the syllabus.

E) Field observation project and write-up:
Students will visit a non-tidal freshwater area and observe/record observations about one or more species associated with instream or riparian zones. Each student will prepare a several page summary report of their findings, supported by any necessary figures, tables or photographs. Bonus points may be awarded for exceptional observation projects. Additional guidance on the observation project is provided later in the syllabus.

F) Take-home final:
At the end of the capstone field trip, students will be given an essay-based take-home final.
RESEARCH PAPER GUIDANCE

OBJECTIVE: To provide students with the opportunity to learn about and report on a cutting edge topic in the field of freshwater ecology.

DELIVERABLE: The deliverable for this assignment will be a 14-20 page literature review paper which includes: an abstract, an introduction of the topic and why it is important, a detailed state-of-knowledge section, your assessment of the management implications for biodiversity, human health, etc. and a literature cited section. Emphasis should be placed on publications in books or refereed journals, but current, as-yet unpublished work can also be used. The written product should generally follow the format of literature synthesis articles found in aquatic journals such as Canadian Journal of Fisheries and Aquatic Sciences or Limnology and Oceanography.

ADVICE:
1) First, don't wait to start thinking about this project- the sooner you come up with an idea the sooner you can begin to acquire and assemble literature for it.
2) Review the literature and perhaps newsfeeds to learn more about topics you are interested in and determine whether enough information exists to write a synthesis paper. Then, present your idea to me.
3) Don’t invest too much time in the paper until you get your topic approved.
4) Have a trusted friend or colleague read your deliverables for spelling, grammar, paragraph content, and readability prior to handing them in- poor quality in any of these areas will be reflected in your grade. (spell check never hurts either)
5) OPTIONAL: You may turn in a draft version of your written document well ahead of time. The purpose of me reviewing your draft work is to help you improve the product that you will turn in for a grade. [Note: I will review papers in the order received and as my schedule permits.]

FIELD OBSERVATION PROJECT AND WRITE-UP GUIDANCE

OBJECTIVE: This project is intended to introduce you to an aspect of freshwater ecology that is often neglected in today's world of high technology- natural history. Basically, you will spend time at the stream, river, wetland, pond or lake of your choice, choose a subject (or group of subjects) to observe, record your observations, and report on them. The idea is to learn something about the habits or life history of an organism or population that can only be discovered by direct observation. There are few areas in the US that are more than 1/4 mile from a stream, river, lake or wetland so you should not need to drive for hours to find a spot if you don’t want to.

APPROACH: READ THIS SECTION SEVERAL TIMES TO GET IT RIGHT!
1) First, consider the weather and time of day in your plans! Many organisms aren’t terribly active in the heat of the day. To begin, think about basic ecological needs of your target organism to generate some ideas about what you might expect to see when at "waterside" (e.g., predation, mating, territoriality, feeding, etc., etc.).

2) Next, think about a non-tidal area that is of interest to you and convenient, and be resourceful in identifying an appropriate organism (e.g., you may want to talk to someone who is familiar with streams in your area such as a naturalist, fly fisherperson, birdwatcher, etc. You may want to do some advance scouting and pick your subject and observation point ahead of time, but **in any event you need to clear your subject choice with me prior to doing your formal observation period**. For this project, your selection should take into consideration mobility of the animal (no plants please-- they are easy to observe but don’t do much), its diurnal activity pattern, and whether you will be able to gather valid information about your subject (i.e, not collected while chasing your subject through the brush--a temporary blind might be useful for some creatures, and **NOT** influenced by humans or their pets). If you choose a spot near home, it will be easier to visit several times if you determine that it is necessary.

3) Visit your site and collect observational data of your target(s) for 3 or more hours on one or more individuals of a species or several species if they are interacting. **Quantify** your observations in some way, such as minutes spent doing various activities, feeding capture rates, etc., being ever on the lookout for unexpected events or interactions that may involve your subject of interest (include those as ancillary observations). If you have a camera, you may want to try and document your subject in action-- photos can be included in the report. [You can increase the level of difficulty for this project [and get extra credit if it is done very well] if you want {e.g., night observations, trail cam photos, video footage, etc.}, but it isn't necessary. Also, I don’t want a 200 page dissertation, just a couple of well-written pages and a supporting table or figure or two.]

4) Write up your results and submit them electronically-- **Six page maximum including graphs, tables and photos**. Be sure to include your name and title on the front page (no cover page is necessary). Include a brief introduction which describes your target subjects and the behavior(s) you chose to study, a methods section which describes when, where and how you did your study, and a results and discussion section. This final section should include any observations about how your presence may have affected the outcome of the study, your thoughts on modifying the study to make it better, and any management implications of the study results. You do not need to cite the work of others in your report-- I am interested in what you saw and how you interpret it. **WARNING**: DO NOT MAKE THE MISTAKE OF SOME AND INCLUDE PAGES OF ‘FILLER’ FROM AN ENCYCLOPEDIA OR THE INTERNET AND TWO OR THREE SENTENCES ABOUT WHAT YOU OBSERVED AND EXPECT TO GET A DECENT GRADE FOR IT.
IMPORTANT REMINDERS:
Observations only! No manipulations of any kind and no chasing-- make yourself as innocuous as possible. **Pick an area without interference by other humans or pets!!!!**

Do your own work, and be prepared to answer questions from me.

Make sure you know what you are studying.

POTENTIAL SUBJECTS: Fish, reptiles, amphibians, invertebrates (no whirligig beetles), aquatic-oriented birds or mammals

Course grading:
Your grade will be calculated using the following point system:

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>POINTS</th>
<th>(% of GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Completion of online assignments and discussion thread</td>
<td>20</td>
<td>(10%)</td>
</tr>
<tr>
<td>Participation in the discussion thread will be graded based on timeliness (0-5pts); thoughtfulness of original response (0-5pts); and quality of response to other student postings (0-5pts). Your self-introduction will be graded based on effort/originality (0-5pts).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Participation</td>
<td>20</td>
<td>(10%)</td>
</tr>
<tr>
<td>Participation will be graded as follows: degree of engagement during discussion sessions (0-5pts); attentiveness during scheduled meeting times (0-5pts); punctuality for scheduled events (0-5pts); courtesy for fellow students (0-5pts).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Laboratory practical</td>
<td>40</td>
<td>(20%)</td>
</tr>
<tr>
<td>Using taxonomic keys, students will be tested on their ability to identify freshwater fishes and freshwater benthic macroinvertebrates of Maryland. Testing will involve use of preserved fish and live or preserved benthic macroinvertebrates. Fish will be identified to family, with extra credit given for correct species identification. Benthos will be identified to order.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Research paper:</td>
<td>60</td>
<td>(30%)</td>
</tr>
<tr>
<td>Students will write a research paper on a pre-approved topic in freshwater ecology. Papers will be graded based on length (0-5 pts), scope of the literature review (0-15pts), quality of synthesis (0-25 pts), grammar/spelling/clarity (0-15pts).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Field observation project and write-up:</td>
<td>30</td>
<td>(15%)</td>
</tr>
<tr>
<td>Students will complete an observation of a freshwater taxa and submit a report. Reports will be graded based on quality of the observation and conclusions made (0-10pts), quantification of</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
behavior (0-10pts), clarity of writing (0-5pts) and grammar and grammar/spelling (0-5pts).

6. **Take-home final:** 30 (15%)
 The take-home final will be essay-based and graded based on depth of investigation to characterize the problem (10pts), synthesis and interpretation of information (15pts) and conclusion about needed management actions (5pts).

 Total = 200 points NOTE: Assignments will not be accepted after the specified deadlines unless there are extraordinary extenuating circumstances.

The following grading scale will be used in this class (the JHU-AAP grading scale):

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>98–100%</td>
<td>A+</td>
</tr>
<tr>
<td>94–97%</td>
<td>A</td>
</tr>
<tr>
<td>90–93%</td>
<td>A-</td>
</tr>
<tr>
<td>88–89%</td>
<td>B+</td>
</tr>
<tr>
<td>84–87%</td>
<td>B</td>
</tr>
<tr>
<td>80–83%</td>
<td>B-</td>
</tr>
<tr>
<td>70–79%</td>
<td>C</td>
</tr>
<tr>
<td><70%</td>
<td>F</td>
</tr>
</tbody>
</table>

More information about AAP grading policies can be found at: [AAP grading policies](#).

What is the policy for late assignments?
You are expected to contact your instructor in advance if you think you cannot meet an assignment deadline. However, if an assignment is late and prior arrangements have not been made with the instructor, the assignment score will be zero. There are no exceptions.

Time Management Expectations
Because this is a graduate-level course the rigor and time commitment is higher than a traditional semester course. It is expected that you look ahead to schedule your time. Plan to complete coursework across several days of the week rather than all in one day. Some assignments require that you work on them for multiple weeks. Be sure to review the assignment directions at the beginning of the course so that you can plan your time accordingly. Please seek help before becoming frustrated and spending a significant amount of time to resolve an issue.

Section 5 Course Participation & Communication Policy

Course management
The on-line part of this course uses the Blackboard course management tool. If you are enrolled in this course you are automatically included in Blackboard for this course. You will need to use your JHED ID to log in. All assignments, readings, and capstone trip advice will be available through Blackboard. **Be sure to check Blackboard on May 28th to begin the course.**

Course etiquette
As JHU graduate students, each of you has proven your ability to master new material, some of which may have been in the form of using your short term memory. In this course, I expect students to embrace and adopt and practice the concept of deep, internalized learning that is shared with other students. So rather than formally testing your memory on concepts I consider important, we will pursue a collaborative learning journey that requires your investigative curiosity, a high level of engagement during all class activities and lots of courtesy and respect for your peers and instructors.
Network Etiquette (i.e. “Netiquette”)

In this course, online discussion will be primarily take place in our online discussion board. In all textual online communication it important to follow proper rules of netiquette.

What is netiquette? Simply stated, it's network etiquette -- that is, the etiquette of cyberspace. And "etiquette" means the social and cultural norms of communicating with others in a proper and respectful way. In other words, netiquette is a set of rules for behaving and interacting properly online. The Netiquette “Core Rules” linked below are a set of general guidelines for cyberspace behavior. They probably won't cover all situations, but they should give you some basic principles to use in communicating online. For Netiquette Core Rules visit The Core Rules of Netiquette web page: http://www.albion.com/netiquette/corerules.html.

Contacting the Instructor

The instructor for this course is Paul Kazyak (pkazyak1@jhu.edu).

Feel free to contact me with comments, questions, and concerns. You will receive a response within 24-48 hours. NOTE: All email messages will be sent to you via your JHU email account, so you should be in the habit of checking that account every day or you should ensure that your JHU email account forwards messages to another account of your choice.

Professionalism is expected throughout this course whether in the online classroom or email. Your responses to questions, interaction/communications/emails with classmates or me should be professional in manner, and that includes responding in a timely manner.

Section 6 Course Protocols & Getting Help

How will I know about changes to the course?
You will find new announcements posted in the Announcements portion of Blackboard, which contain information about current course activities that you are working on and any changes to the course. Please check announcements every time that you log into your online course.

How should I communicate with others in this course?
The majority of communication will take place within the Discussion forums. When you have a question about an assignment or a question about the course, please email me at pkazyak1@jhu.edu.

Are there any requirements for sending e-mail messages?
When you send an e-mail message to the instructor or to another participant in the course, please observe the following guidelines:
● Include the title of the course in the subject field (e.g., Freshwater Ecology).
● Keep messages concise, and check spelling and grammar.
● Send longer messages as attachments.
● Sign your full name (the sender’s email is not always obvious).

Section 7 Course Topics, Activities & Schedule

Given the vagaries of weather and other situations beyond the instructor’s control, the following agenda should be considered tentative and subject to change.
<table>
<thead>
<tr>
<th>Day</th>
<th>Thursday 7 June</th>
<th>Friday 8 June</th>
<th>Saturday 9 June</th>
<th>Sunday 10 June</th>
<th>Monday 11 June</th>
<th>Tuesday 12 June</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00</td>
<td>Field experience convenes; introductions and move in</td>
<td>10:00 am</td>
<td>Field experience convenes; introductions and move in</td>
<td>10:00 am</td>
<td>Field experience convenes; introductions and move in</td>
<td>10:00 am</td>
</tr>
<tr>
<td>11:00</td>
<td>Introduction to Stream Biota: Systematics and Taxonomy</td>
<td>11:00</td>
<td>Introduction to Stream Biota: Systematics and Taxonomy</td>
<td>11:00</td>
<td>Introduction to Stream Biota: Systematics and Taxonomy</td>
<td>11:00</td>
</tr>
<tr>
<td>12:00</td>
<td>LUNCH</td>
<td>12:00</td>
<td>LUNCH</td>
<td>12:00</td>
<td>LUNCH</td>
<td>12:00</td>
</tr>
<tr>
<td>1:00 pm</td>
<td>Introduction to Stream Biota: Systematics and Taxonomy (cont)</td>
<td>1:00 pm</td>
<td>Introduction to Stream Biota: Systematics and Taxonomy (cont)</td>
<td>1:00 pm</td>
<td>Introduction to Stream Biota: Systematics and Taxonomy (cont)</td>
<td>1:00 pm</td>
</tr>
<tr>
<td>2:00</td>
<td>Taxonomy Lab</td>
<td>2:00</td>
<td>Taxonomy Lab</td>
<td>2:00</td>
<td>Taxonomy Lab</td>
<td>2:00</td>
</tr>
<tr>
<td>4:00</td>
<td>Hydrologic Cycle, Principles of Hydrology</td>
<td>4:00</td>
<td>Hydrologic Cycle, Principles of Hydrology</td>
<td>4:00</td>
<td>Hydrologic Cycle, Principles of Hydrology</td>
<td>4:00</td>
</tr>
<tr>
<td>6:00</td>
<td>DINNER</td>
<td>6:00</td>
<td>DINNER</td>
<td>6:00</td>
<td>DINNER</td>
<td>6:00</td>
</tr>
<tr>
<td>7:00</td>
<td>Physical, Chemical, and Geomorphological Processes in Stream Formation</td>
<td>7:00</td>
<td>Physical, Chemical, and Geomorphological Processes in Stream Formation</td>
<td>7:00</td>
<td>Physical, Chemical, and Geomorphological Processes in Stream Formation</td>
<td>7:00</td>
</tr>
<tr>
<td>8:00</td>
<td>FREE TIME</td>
<td>8:00</td>
<td>FREE TIME</td>
<td>8:00</td>
<td>FREE TIME</td>
<td>8:00</td>
</tr>
<tr>
<td>7:00 am</td>
<td>BREAKFAST</td>
<td>7:00 am</td>
<td>BREAKFAST</td>
<td>7:00 am</td>
<td>BREAKFAST</td>
<td>7:00 am</td>
</tr>
<tr>
<td>8:00</td>
<td>Physical Properties of Streams, Rosgen Classification System, Physical Restoration</td>
<td>8:00</td>
<td>Physical Properties of Streams, Rosgen Classification System, Physical Restoration</td>
<td>8:00</td>
<td>Physical Properties of Streams, Rosgen Classification System, Physical Restoration</td>
<td>8:00</td>
</tr>
<tr>
<td>11:00</td>
<td>FIELD TRIP: Hunting Creek, Beaver Run, Albert Powell Hatchery</td>
<td>11:00</td>
<td>FIELD TRIP: Hunting Creek, Beaver Run, Albert Powell Hatchery</td>
<td>11:00</td>
<td>FIELD TRIP: Hunting Creek, Beaver Run, Albert Powell Hatchery</td>
<td>11:00</td>
</tr>
<tr>
<td>12:00</td>
<td>LUNCH</td>
<td>12:00</td>
<td>LUNCH</td>
<td>12:00</td>
<td>LUNCH</td>
<td>12:00</td>
</tr>
<tr>
<td>6:00 pm</td>
<td>Return to ThorpeWood; DINNER</td>
<td>6:00 pm</td>
<td>Return to ThorpeWood; DINNER</td>
<td>6:00 pm</td>
<td>Return to ThorpeWood; DINNER</td>
<td>6:00 pm</td>
</tr>
<tr>
<td>7:00</td>
<td>FREE TIME</td>
<td>7:00</td>
<td>FREE TIME</td>
<td>7:00</td>
<td>FREE TIME</td>
<td>7:00</td>
</tr>
<tr>
<td>7:00 am</td>
<td>BREAKFAST</td>
<td>7:00 am</td>
<td>BREAKFAST</td>
<td>7:00 am</td>
<td>BREAKFAST</td>
<td>7:00 am</td>
</tr>
<tr>
<td>9:00</td>
<td>Chemical Properties of Streams, Chemical Restoration, Nutrient Dynamics, Nutrient Management</td>
<td>9:00</td>
<td>Chemical Properties of Streams, Chemical Restoration, Nutrient Dynamics, Nutrient Management</td>
<td>9:00</td>
<td>Chemical Properties of Streams, Chemical Restoration, Nutrient Dynamics, Nutrient Management</td>
<td>9:00</td>
</tr>
<tr>
<td>12:00</td>
<td>LUNCH</td>
<td>12:00</td>
<td>LUNCH</td>
<td>12:00</td>
<td>LUNCH</td>
<td>12:00</td>
</tr>
<tr>
<td>1:00 pm</td>
<td>FREE TIME</td>
<td>1:00 pm</td>
<td>FREE TIME</td>
<td>1:00 pm</td>
<td>FREE TIME</td>
<td>1:00 pm</td>
</tr>
<tr>
<td>2:00</td>
<td>FIELD TRIP: Buzzard Branch, unnamed tributary to Buzzard Branch</td>
<td>2:00</td>
<td>FIELD TRIP: Buzzard Branch, unnamed tributary to Buzzard Branch</td>
<td>2:00</td>
<td>FIELD TRIP: Buzzard Branch, unnamed tributary to Buzzard Branch</td>
<td>2:00</td>
</tr>
<tr>
<td>6:00</td>
<td>DINNER</td>
<td>6:00</td>
<td>DINNER</td>
<td>6:00</td>
<td>DINNER</td>
<td>6:00</td>
</tr>
<tr>
<td>7:00</td>
<td>FREE TIME</td>
<td>7:00</td>
<td>FREE TIME</td>
<td>7:00</td>
<td>FREE TIME</td>
<td>7:00</td>
</tr>
<tr>
<td>8:00</td>
<td>Campfire discussion of required readings</td>
<td>8:00</td>
<td>Campfire discussion of required readings</td>
<td>8:00</td>
<td>Campfire discussion of required readings</td>
<td>8:00</td>
</tr>
<tr>
<td>7:00 am</td>
<td>BREAKFAST</td>
<td>7:00 am</td>
<td>BREAKFAST</td>
<td>7:00 am</td>
<td>BREAKFAST</td>
<td>7:00 am</td>
</tr>
<tr>
<td>8:00</td>
<td>Community and Ecosystem Level Processes Part 1</td>
<td>8:00</td>
<td>Community and Ecosystem Level Processes Part 1</td>
<td>8:00</td>
<td>Community and Ecosystem Level Processes Part 1</td>
<td>8:00</td>
</tr>
<tr>
<td>11:00</td>
<td>FREE TIME</td>
<td>11:00</td>
<td>FREE TIME</td>
<td>11:00</td>
<td>FREE TIME</td>
<td>11:00</td>
</tr>
<tr>
<td>12:00</td>
<td>LUNCH</td>
<td>12:00</td>
<td>LUNCH</td>
<td>12:00</td>
<td>LUNCH</td>
<td>12:00</td>
</tr>
<tr>
<td>1:00 pm</td>
<td>FREE TIME</td>
<td>1:00 pm</td>
<td>FREE TIME</td>
<td>1:00 pm</td>
<td>FREE TIME</td>
<td>1:00 pm</td>
</tr>
<tr>
<td>2:00</td>
<td>FIELD TRIP: Homestead Pond</td>
<td>2:00</td>
<td>FIELD TRIP: Homestead Pond</td>
<td>2:00</td>
<td>FIELD TRIP: Homestead Pond</td>
<td>2:00</td>
</tr>
<tr>
<td>5:00</td>
<td>FREE TIME/OPTIONAL TAXONOMY PRACTICE</td>
<td>5:00</td>
<td>FREE TIME/OPTIONAL TAXONOMY PRACTICE</td>
<td>5:00</td>
<td>FREE TIME/OPTIONAL TAXONOMY PRACTICE</td>
<td>5:00</td>
</tr>
<tr>
<td>6:00</td>
<td>DINNER</td>
<td>6:00</td>
<td>DINNER</td>
<td>6:00</td>
<td>DINNER</td>
<td>6:00</td>
</tr>
<tr>
<td>7:00</td>
<td>FREE TIME</td>
<td>7:00</td>
<td>FREE TIME</td>
<td>7:00</td>
<td>FREE TIME</td>
<td>7:00</td>
</tr>
<tr>
<td>7:00 am</td>
<td>BREAKFAST</td>
<td>7:00 am</td>
<td>BREAKFAST</td>
<td>7:00 am</td>
<td>BREAKFAST</td>
<td>7:00 am</td>
</tr>
<tr>
<td>8:00</td>
<td>Community and Ecosystem Level Processes (cont.), River Continuum Concept</td>
<td>8:00</td>
<td>Community and Ecosystem Level Processes (cont.), River Continuum Concept</td>
<td>8:00</td>
<td>Community and Ecosystem Level Processes (cont.), River Continuum Concept</td>
<td>8:00</td>
</tr>
<tr>
<td>10:00</td>
<td>FIELD TRIP: High Run + stormwater tour</td>
<td>10:00</td>
<td>FIELD TRIP: High Run + stormwater tour</td>
<td>10:00</td>
<td>FIELD TRIP: High Run + stormwater tour</td>
<td>10:00</td>
</tr>
<tr>
<td>12:00</td>
<td>LUNCH</td>
<td>12:00</td>
<td>LUNCH</td>
<td>12:00</td>
<td>LUNCH</td>
<td>12:00</td>
</tr>
<tr>
<td>5:00 pm</td>
<td>The Role of Woody Debris and Beavers, Crayfish</td>
<td>5:00 pm</td>
<td>The Role of Woody Debris and Beavers, Crayfish</td>
<td>5:00 pm</td>
<td>The Role of Woody Debris and Beavers, Crayfish</td>
<td>5:00 pm</td>
</tr>
<tr>
<td>6:00</td>
<td>DINNER</td>
<td>6:00</td>
<td>DINNER</td>
<td>6:00</td>
<td>DINNER</td>
<td>6:00</td>
</tr>
<tr>
<td>7:00</td>
<td>Migration & Drift, Fish Passage</td>
<td>7:00</td>
<td>Migration & Drift, Fish Passage</td>
<td>7:00</td>
<td>Migration & Drift, Fish Passage</td>
<td>7:00</td>
</tr>
<tr>
<td>8:00</td>
<td>FREE TIME</td>
<td>8:00</td>
<td>FREE TIME</td>
<td>8:00</td>
<td>FREE TIME</td>
<td>8:00</td>
</tr>
</tbody>
</table>
Day 6 Wednesday 13 June
7:00 am BREAKFAST
7:30 ALL DAY FIELD TRIP: - Gwynns Falls @ Carroll Golf Course, Sawmill Run @ BWI, Little Patuxent @ Ft Meade, Suzi’s pond
12:00 LUNCH (BOXED)
6:00 pm DINNER @ KAZYAKS
8:00 Return to ThorpeWood

Day 7 Thursday 14 June
7:00 am BREAKFAST
8:00 Freshwater Biodiversity, Introduced species
11:00 FREE TIME
12:00 LUNCH
1:00 pm FREE TIME
3:00 Restoration & Protection of Freshwater Ecosystems
5:00 FREE TIME
6:00 DINNER
7:00 FREE TIME/OPTIONAL TAXONOMY PRACTICE

Day 8 Friday 15 June
7:00 am BREAKFAST
8:00 ALL DAY FIELD TRIP: Leetown Science Center, Potomac River @ Brunswick, Catoctin Creek @ Poffenberger Rd
12:00 LUNCH (BOXED)
6:00 pm DINNER
7:00 GUEST LECTURER
9:00 Return to ThorpeWood

Day 9 Saturday 16 June
8:00 am BREAKFAST
9:00 Homestead Pond recapture survey/ pond & lake management discussion
12:00 LUNCH
1:00 pm Non-tidal wetlands
2:00 Systems thinking in aquatic management
5:00 FREE TIME/OPTIONAL TAXONOMY PRACTICE/FIELD OBSERVATION
6:00 DINNER
9:00 Campfire: Course review

Day 10 Sunday 17 June
8:00 am BREAKFAST
9:00 TAXONOMY PRACTICE
10:30 TAXONOMY PRACTICAL
12:00 LUNCH
1:00 pm Pack
1:30 Final debrief
2:00 Adjourn
Section 8 University Policies

General
This course adheres to all University policies described in the academic catalog. Please pay close attention to the following policies:

Students with Disabilities
Johns Hopkins University is committed to providing reasonable and appropriate accommodations to students with disabilities. Students with documented disabilities should contact the coordinator listed on the Disability Accommodations page. Further information and a link to the Student Request for Accommodation form can also be found on the Disability Accommodations page.

Ethics & Plagiarism
JHU Ethics Statement: The strength of the university depends on academic and personal integrity. In this course, you must be honest and truthful. Ethical violations include cheating on exams, plagiarism, reuse of assignments, improper use of the Internet and electronic devices, unauthorized collaboration, alteration of graded assignments, forgery and falsification, lying, facilitating academic dishonesty, and unfair competition. Report any violations you witness to the instructor.

Read and adhere to JHU’s Notice on Plagiarism.

Dropping the Course
You are responsible for understanding the university’s policies and procedures regarding withdrawing from courses found in the current catalog. You should be aware of the current deadlines according to the Academic Calendar.

Getting Help
You have a variety of methods to get help on Blackboard. Please consult the resource listed in the "Blackboard Help" link for important information. If you encounter technical difficulty in completing or submitting any online assessment, please immediately contact the designated help desk listed on the AAP online support page. Also, contact your instructor at the email address listed in the syllabus.

Copyright Policy
All course materials are the property of JHU and are to be used for the student's individual academic purpose only. Any dissemination, copying, reproducing, modification, displaying, or transmitting of any course material content for any other purpose is prohibited, will be considered misconduct under the JHU Copyright Compliance Policy, and may be cause for disciplinary action. In addition, encouraging academic dishonesty or cheating by distributing information about course materials or assignments which would give an unfair advantage to others may violate AAP’s Code of Conduct and the University’s Student Conduct Code. Specifically, recordings, course materials, and lecture notes may not be exchanged or distributed for commercial purposes, for compensation, or for any purpose other than use by students enrolled in the class. Other distributions of such materials by students may be deemed to violate the above University policies and be subject to disciplinary action.

Code of Conduct
To better support all students, the Johns Hopkins University non-academic Student Conduct Code has been integrated and updated to include all divisions of the University. In addition, it is
important to note that all AAP students are still accountable for the Code of Conduct for Advanced Academic Programs.

Title IX Confidentiality and Mandatory Reporting

As an instructor, one of my responsibilities is to help create a safe and inclusive learning environment on our campus. I also have mandatory reporting responsibilities related to my role as a Responsible Employee under the Sexual Misconduct Policy & Procedures (which prohibits sexual harassment, sexual assault, relationship violence and stalking), as well as the General Anti-Harassment Policy (which prohibits all types of protected status based discrimination and harassment). It is my goal that you feel able to share information related to your life experiences in classroom discussions, in your written work, and in our one-on-one meetings. I will seek to keep information you share private to the greatest extent possible. However, I am required to share information that I learn of regarding sexual misconduct, as well as protected status based harassment and discrimination, with the Office of Institutional Equity (OIE). For a list of individuals/offices who can speak with you confidentially, please see Appendix B of the [JHU Sexual Misconduct Policies and Laws](#).

For more information on both policies mentioned above, please see: [JHU Relevant Policies, Codes, Statements and Principles](#). Please also note that certain faculty and other University community members also have a duty as a designated Campus Safety Authority under the Clery Act to notify campus security of certain crimes, as well as a duty under State law and University policy to report suspected child abuse and/or neglect.