Course Schedule

The courses below are those offered for the term. (To view the course description, class dates & times, touch on accordion tab by the title.)

State-specific Information for Online Programs

Note: Students should be aware of state-specific information for online programs. For more information, please contact an admissions representative.

  • Homewood Campus

    410.601.01 - Biochemistry

    $4196

    Richa Tyagi

    Monday 6:00 - 9:45; 6/5 - 8/21

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world of chemistry and the living world of biology.

    410.602.01 - Molecular Biology

    $4196

    Robert Horner

    Tuesday 6:00 - 9:45; 5/30 - 8/15

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include methods in recombinant DNA technology, microarrays, and microRNA. Prerequisite: 410.601 Biochemistry

    410.603.01 - Advanced Cell Biology I

    $4196

    -STAFF-

    Wednesday 6:00 - 9:45; 5/31 - 8/16

    This course covers cell organization and subcellular structure. Students examine the evolution of the cell, chromosome and plasma membrane structures and behaviors, mechanics of cell division, sites of macromolecular synthesis and processing, transport across cell membranes, cell dynamics, organelle biogenesis, and cell specialization. Students also are introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation.

    410.604.01 - Advanced Cell Biology II

    $4196

    Michael Lebowitz

    Thursday 6:00 - 9:45; 6/1 - 8/17

    This course is a continuation of 410.603 (Advanced Cell Biology I) and further explores cell organization and subcellular structure. Students examine cell-to-cell signaling that involves hormones and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathways to oncogenesis and other disease states will be stressed. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I

    410.610.01 - Epigenetics, Gene Organization & Expression

    $4196

    Roza Selimyan

    Wednesday 6:00 - 9:45; 5/31 - 8/16

    Students use genetic analysis and molecular biology techniques to investigate chromosome organization, chromatin structure, functional genomics, and mechanisms of differential gene expression. Other topics include DNA methylation, silencers, enhancers, genomic imprinting, and microarray analysis. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology

    410.751.01 - Chemical Libraries & Diversity

    $4196

    Takashi Tsukamoto

    Tuesday 6:00 - 9:45; 5/30 - 8/15

    Chemical diversity and "pharmacological space" will be studied with an emphasis on disciplines related to drug discovery. Medicinal chemistry, natural product chemistry, focused synthetic libraries, and combinatorial chemistry will be covered. Lipinski's rules for drug-like molecules will be discussed in detail, as well as methods for chemical analysis, in silico drug design, molecular modeling, and compound storage and handling. In addition, techniques used for assessing and harnessing chemical diversity for drug discovery will be discussed. Prerequisites: All four core courses or approval of program committee

    410.800.01 - Independent Research in Biotechnology

    $4196

    Thomas Koval

    Sunday 12:00 - 12:01; 5/30 - 8/21

    Students in the biotechnology program have the opportunity to enroll in an independent research course. This elective course is an option after a student has completed at least eight graduate-level courses and has compiled a strong academic record. Prior to proposing a project, interested students must have identified a research topic and a mentor who is familiar with their prospective inquiry and who is willing to provide guidance and oversee the project. The research project must be independent of current work-related responsibilities as determined by the project mentor. The mentor may be a faculty member teaching in the biotechnology program, a supervisor from the student's place of work, or any expert with appropriate credentials. Students are required to submit a formal proposal for review and approval by the biotechnology program committee. The proposal must be received by the Advanced Academic Programs office no later than one month prior to the beginning of the term in which the student wants to enroll in the course. Students must meet with a member of the program committee periodically for discussion of the project's progress, and a written document must be completed and approved by the program committee and project mentor for the student to receive graduate credit. Additional guidelines can be obtained from the AAP administrative office. Prerequisites : All four core courses and four elective courses.

  • Montgomery County Campus

    410.601.71 - Biochemistry

    $4196

    Michael Lebowitz

    Tuesday 6:00 - 9:45; 5/30 - 8/15

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world of chemistry and the living world of biology.

    410.601.72 - Biochemistry

    $4196

    Elena Schwartz

    Tuesday 6:00 - 9:45; 5/30 - 8/15

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world of chemistry and the living world of biology.

    410.601.73 - Biochemistry

    $4196

    Elena Schwartz

    Wednesday 6:00 - 9:45; 5/31 - 8/16

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world of chemistry and the living world of biology.

    410.602.71 - Molecular Biology

    $4196

    -STAFF-

    Monday 6:00 - 9:45; 6/5 - 8/21

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include methods in recombinant DNA technology, microarrays, and microRNA. Prerequisite: 410.601 Biochemistry

    410.603.71 - Advanced Cell Biology I

    $4196

    Kristen Pluchino

    Wednesday 6:00 - 9:45; 5/31 - 8/16

    This course covers cell organization and subcellular structure. Students examine the evolution of the cell, chromosome and plasma membrane structures and behaviors, mechanics of cell division, sites of macromolecular synthesis and processing, transport across cell membranes, cell dynamics, organelle biogenesis, and cell specialization. Students also are introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation.

    410.603.72 - Advanced Cell Biology I

    $4196

    Thomas Koval

    Thursday 6:00 - 9:45; 6/1 - 8/17

    This course covers cell organization and subcellular structure. Students examine the evolution of the cell, chromosome and plasma membrane structures and behaviors, mechanics of cell division, sites of macromolecular synthesis and processing, transport across cell membranes, cell dynamics, organelle biogenesis, and cell specialization. Students also are introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation.

    410.658.71 - Biodefense & Infectious Disease Laboratory Methods

    $4196

    Patrick Cummings
    Kristina Obom

    Monday 9:00 - 4:00; 7/10 - 7/14
    Tuesday 9:00 - 4:00; 7/11 - 7/14
    Wednesday 9:00 - 4:00; 7/12 - 7/14
    Thursday 9:00 - 4:00; 7/13 - 7/14
    Friday 9:00 - 4:00; 7/14 - 7/14

    This laboratory course introduces students to the methods and techniques used for biothreat detection, surveillance and identification. Using bio-simulants and demonstrations, various biodetection platforms will be discussed and presented, such as point-of-detection devices and methods, laboratory based screening and identification technologies (culture, q u a n t i t a t i v e PCR, , immunoassays, biosensors), and high-throughput environmental surveillance methods. Statistical methods for determining diagnostic sensitivity and specificity, and assay validity will be discussed. Laboratory practices and procedures for working in simulated Biosafety Level 2 and 3 environments will be practiced. Students will be introduced to the current bioinformatics genomic and proteomic databases used for select agent (category A, B and C) identification and characterization. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I; undergraduate Microbiology or 410.615 Microbiology or approval of program committee.

    Class is from July 3rd to July 22nd. The onsite portion at the Montgomery County Campus is from July 10th to July 14th. The online portions of the course are from July 3rd to July 8th and from July 17th to July 22. The course is a compressed lab class and meets onsite for one week; Monday 7/10 9-4 Tuesday 7/11 9-4 Wednesday 7/12 9-4 Thursday 7/13 9-4 Friday 7/14 9-4 Lab Fee: $175.00

    410.660.71 - Immunological Techniques in Biotechnology

    $4196

    Kristin Mullins

    Thursday 6:00 - 9:30; 6/1 - 8/17

    This laboratory course introduces students to methods for analyzing the immune system. Participants gain experience with various immunologic techniques used in research and biotechnology laboratories such as immunoassays, immunofluorescence, western blot analysis, SDS-PAGE, antibody purification (protein A), and cytokine assays. Additional topics for discussion include hybridoma technology, phage antibody libraries, therapeutic monoclonal antibodies, and flow cytometry. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I; 410.613 Principles of Immunology or undergraduate immunology course highly recommended; or consent of program committee

    410.706.71 - Building and Leading Teams in Health Care

    $4196

    Admon Alexander

    Tuesday 6:00 - 9:45; 5/30 - 8/15

    In order to provide the best care possible, health care professionals are working together more now than ever before. As a result, strong leadership and teamwork skills are becoming a necessity in joining the health care field. This course will provide hands-on activities to help students develop problem solving skills, learn basic negotiation and mediation strategies, and understand their own tendencies as a leader and team member. Using real world examples, students will explore how strong leadership and teamwork can drive innovative solutions to public health issues.

    410.706.72 - Building and Leading Teams in Health Care

    $4196

    Admon Alexander

    Thursday 9:00 - 12:45; 6/1 - 8/17

    In order to provide the best care possible, health care professionals are working together more now than ever before. As a result, strong leadership and teamwork skills are becoming a necessity in joining the health care field. This course will provide hands-on activities to help students develop problem solving skills, learn basic negotiation and mediation strategies, and understand their own tendencies as a leader and team member. Using real world examples, students will explore how strong leadership and teamwork can drive innovative solutions to public health issues.

    410.706.73 - Building and Leading Teams in Health Care

    $4196

    Admon Alexander

    Thursday 1:30 - 5:15; 6/1 - 8/17

    In order to provide the best care possible, health care professionals are working together more now than ever before. As a result, strong leadership and teamwork skills are becoming a necessity in joining the health care field. This course will provide hands-on activities to help students develop problem solving skills, learn basic negotiation and mediation strategies, and understand their own tendencies as a leader and team member. Using real world examples, students will explore how strong leadership and teamwork can drive innovative solutions to public health issues.

    410.801.71 - Biotechnology Thesis

    $4196

    Kristina Obom

    Sunday 12:00 - 12:01; 5/30 - 8/21

    Students wishing to complete a thesis may do so by embarking on a two semester thesis project, which includes 410.800 Independent Research Project and 410.801 Biotechnology Thesis courses. This project must be a hypothesis-based original research study. The student must complete 410.800 Independent Research Project and fulfill the requirements of that course, including submission of project proposal, final paper and poster presentation, before enrolling in the subsequent thesis course. For the thesis course, students are required to submit a revised proposal (an update of the 410.800 proposal) for review and approval by the faculty advisor and biotechnology program committee one month prior to the beginning of the term. Students must meet the faculty advisor periodically for discussion of the project's progress. Graduation with a thesis is subject to approval by the thesis committee and program committee, and requires the student to present their project to a faculty committee both orally and in writing. Prerequisites: All four core science courses and six elective courses, which must include 410.800 Independent Research Project and 410.645 Biostatistics.

    Please contact Dr. Obom before registering for the course. kobom@jhu.edu

  • Online Courses

    410.303.81 - Foundations in Bioscience

    $4196

    Weiying Pan

    Online 5/30 - 8/21

    This course examines the fundamental underlying scientific concepts utilized in the creation and development of biomedical products. Topics to be covered include the structure and function of biomolecules such as proteins, enzymes, carbohydrates, lipids, and DNA, as well as the structure and function of cellular components such as membranes, vesicles, organelles, and the cytoskeleton. In addition, students will examine the complexities of metabolism, DNA replication, transcription, translation, signal transduction mechanisms, apoptosis, the cell cycle, and cancer. Please note that this course does not count toward requirements for the master's degree in either biotechnology or bioscience regulatory affairs and is required as a prerequisite course for some students entering the Master of Science in Bioscience Regulatory Affairs.

    Technology Fees: $175.00

    410.601.81 - Biochemistry

    $4196

    Karen Wells

    Online 5/30 - 8/21

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world of chemistry and the living world of biology.

    Technology Fees: $175.00

    410.601.82 - Biochemistry

    $4196

    Satarupa Das

    Online 5/30 - 8/21

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world of chemistry and the living world of biology.

    Technology Fees: $175.00

    410.601.83 - Biochemistry

    $4196

    John Hope

    Online 5/30 - 8/21

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world of chemistry and the living world of biology.

    Technology Fees: $175.00

    410.601.84 - Biochemistry

    $4196

    Satarupa Das

    Online 5/30 - 8/21

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world of chemistry and the living world of biology.

    Technology Fees: $175.00

    410.602.81 - Molecular Biology

    $4196

    Roza Selimyan

    Online 5/30 - 8/21

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include methods in recombinant DNA technology, microarrays, and microRNA. Prerequisite: 410.601 Biochemistry

    Technology Fees: $175.00

    410.602.82 - Molecular Biology

    $4196

    Dr. Mark Hollier

    Online 5/30 - 8/21

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include methods in recombinant DNA technology, microarrays, and microRNA. Prerequisite: 410.601 Biochemistry

    Technology Fees: $175.00

    410.602.83 - Molecular Biology

    $4196

    Dr. Mark Hollier

    Online 5/30 - 8/21

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include methods in recombinant DNA technology, microarrays, and microRNA. Prerequisite: 410.601 Biochemistry

    Technology Fees: $175.00

    410.602.84 - Molecular Biology

    $4196

    Dr. Jonathon Bennett

    Online 5/30 - 8/21

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include methods in recombinant DNA technology, microarrays, and microRNA. Prerequisite: 410.601 Biochemistry

    Technology Fees: $175.00

    410.603.81 - Advanced Cell Biology I

    $4196

    Laundette Jones

    Online 5/30 - 8/21

    This course covers cell organization and subcellular structure. Students examine the evolution of the cell, chromosome and plasma membrane structures and behaviors, mechanics of cell division, sites of macromolecular synthesis and processing, transport across cell membranes, cell dynamics, organelle biogenesis, and cell specialization. Students also are introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation.

    Technology Fees: $175.00

    410.603.82 - Advanced Cell Biology I

    $4196

    Mark Verdecia

    Online 5/30 - 8/21

    This course covers cell organization and subcellular structure. Students examine the evolution of the cell, chromosome and plasma membrane structures and behaviors, mechanics of cell division, sites of macromolecular synthesis and processing, transport across cell membranes, cell dynamics, organelle biogenesis, and cell specialization. Students also are introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation.

    Technology Fees: $175.00

    410.603.83 - Advanced Cell Biology I

    $4196

    Jeffrey Mahr

    Online 5/30 - 8/21

    This course covers cell organization and subcellular structure. Students examine the evolution of the cell, chromosome and plasma membrane structures and behaviors, mechanics of cell division, sites of macromolecular synthesis and processing, transport across cell membranes, cell dynamics, organelle biogenesis, and cell specialization. Students also are introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation.

    Technology Fees: $175.00

    410.603.84 - Advanced Cell Biology I

    $4196

    Melinda Maris

    Online 5/30 - 8/21

    This course covers cell organization and subcellular structure. Students examine the evolution of the cell, chromosome and plasma membrane structures and behaviors, mechanics of cell division, sites of macromolecular synthesis and processing, transport across cell membranes, cell dynamics, organelle biogenesis, and cell specialization. Students also are introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation.

    Technology Fees: $175.00

    410.604.81 - Advanced Cell Biology II

    $4196

    Mark Verdecia

    Online 5/30 - 8/21

    This course is a continuation of 410.603 (Advanced Cell Biology I) and further explores cell organization and subcellular structure. Students examine cell-to-cell signaling that involves hormones and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathways to oncogenesis and other disease states will be stressed. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I

    Technology Fees: $175.00

    410.604.82 - Advanced Cell Biology II

    $4196

    Lisa Selbie

    Online 5/30 - 8/21

    This course is a continuation of 410.603 (Advanced Cell Biology I) and further explores cell organization and subcellular structure. Students examine cell-to-cell signaling that involves hormones and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathways to oncogenesis and other disease states will be stressed. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I

    Technology Fees: $175.00

    410.604.83 - Advanced Cell Biology II

    $4196

    Lisa Selbie

    Online 5/30 - 8/21

    This course is a continuation of 410.603 (Advanced Cell Biology I) and further explores cell organization and subcellular structure. Students examine cell-to-cell signaling that involves hormones and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathways to oncogenesis and other disease states will be stressed. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I

    Technology Fees: $175.00

    410.610.81 - Epigenetics, Gene Organization & Expression

    $4196

    Jonathan Lochamy

    Online 5/30 - 8/21

    Students use genetic analysis and molecular biology techniques to investigate chromosome organization, chromatin structure, functional genomics, and mechanisms of differential gene expression. Other topics include DNA methylation, silencers, enhancers, genomic imprinting, and microarray analysis. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology

    Technology Fees: $175.00

    410.612.81 - Human Molecular Genetics

    $4196

    Erin Morrey

    Online 5/30 - 8/21

    In this course students learn to use the tools of modern genomics to elucidate phenotypic variation within populations. The course uses human disease (from simple Mendelian disorders to common complex disorders) to exemplify the types of studies and tools that can be used to characterize cellular pathophysiology as well as to provide genetic diagnostics and therapies. Students become facile with linkage analysis, cancer genetics, microarray analysis (oligo and DNA arrays), gene therapy, SNP studies, imprinting, disequilibrium mapping, and ethical dilemmas associated with the Human Genome Project. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology

    Technology Fees: $175.00

    410.616.81 - Virology

    $4196

    Bruce Brown

    Online 5/30 - 8/21

    This course covers the advanced study of viruses with regard to the basic, biochemical, molecular, epidemiological, clinical, and biotechnological aspects of animal viruses primarily and bacteriophage, plant viruses, viroids, prions, and unconventional agents secondarily. Specific areas of virology, including viral structure and assembly, viral replication, viral recombination and evolution, virus-host interactions, viral transformation, gene therapy, antiviral drugs, and vaccines, are presented. The major animal virus families are discussed individually with respect to classification, genomic structure, virion structure, virus cycle, pathogenesis, clinical features, epidemiology, immunity, and control. The viral vectors and their applications in biotechnology are discussed. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I

    Technology Fees: $175.00

    410.621.81 - Agricultural Biotechnology

    $4196

    Sherry Ogg

    Online 5/30 - 8/21

    In this course, students are introduced to the application of recombinant DNA technology to agriculture. Studied are methods for the introduction of foreign DNA into plant and animal cells and generation of stably transformed plants and animals. Students consider specific examples of the use of transgenic plants and animals in biotechnology, which can provide protection against insects, diseases, and tolerance to specific herbicides. They also investigate how recombinant growth hormones can result in leaner meat, greater milk yield, better feed utilization, and how transgenic plants and animals can serve as bioreactors for the production of medicinals or protein pharmaceuticals. Because recombinant agricultural products are released into the environment or consumed as foods, students also need to become familiar with environmental safety issues. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I

    Technology Fees: $175.00

    410.622.81 - Molecular Basis of Pharmacology

    $4196

    Lisa Selbie

    Online 5/30 - 8/21

    This course begins by reviewing receptor binding and enzyme kinetics. Various cellular receptors and their physiology are discussed as well as the pharmacological agents used to define and affect the receptor's function. Students study the pharmacology of cell surface receptors and intracellular receptors. Also considered are the drugs that affect enzymes. Prerequisites: All four core courses

    Technology Fees: $175.00

    410.627.81 - Translational Biotechnology:From Intellectual Property to Licensing

    $4196

    Timothy Alcorn

    Online 5/30 - 8/21

    This course provides an extensive overview of a process for development of a pharmaceutical by a biotechnology company or pharmaceutical company. The course emphasizes the importance of intellectual property, the basic sciences underpinning the development of a product, and the importance of the interaction between a company and the Food and Drug Administration (FDA). Students learn to appreciate the importance of quality control and assurance, good manufacturing practices, preclinical and clinical testing, and the lengthy regulatory processes which govern the development, manufacture, and eventual sale of biotechnological products. Hands-on solving of practical problems and guest lecturers who are experts in the field familiarize students with the intricacies of the process. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology or admission to the MS in Regulatory Sciene OR Masters of Biotechnology Enterprise and Entrepreneurship Programs.

    Technology Fees: $175.00

    410.627.82 - Translational Biotechnology:From Intellectual Property to Licensing

    $4196

    Timothy Alcorn

    Online 5/30 - 8/21

    This course provides an extensive overview of a process for development of a pharmaceutical by a biotechnology company or pharmaceutical company. The course emphasizes the importance of intellectual property, the basic sciences underpinning the development of a product, and the importance of the interaction between a company and the Food and Drug Administration (FDA). Students learn to appreciate the importance of quality control and assurance, good manufacturing practices, preclinical and clinical testing, and the lengthy regulatory processes which govern the development, manufacture, and eventual sale of biotechnological products. Hands-on solving of practical problems and guest lecturers who are experts in the field familiarize students with the intricacies of the process. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology or admission to the MS in Regulatory Sciene OR Masters of Biotechnology Enterprise and Entrepreneurship Programs.

    Technology Fees: $175.00

    410.627.83 - Translational Biotechnology:From Intellectual Property to Licensing

    $4196

    Bonnie Robeson

    Online 5/30 - 8/21

    This course provides an extensive overview of a process for development of a pharmaceutical by a biotechnology company or pharmaceutical company. The course emphasizes the importance of intellectual property, the basic sciences underpinning the development of a product, and the importance of the interaction between a company and the Food and Drug Administration (FDA). Students learn to appreciate the importance of quality control and assurance, good manufacturing practices, preclinical and clinical testing, and the lengthy regulatory processes which govern the development, manufacture, and eventual sale of biotechnological products. Hands-on solving of practical problems and guest lecturers who are experts in the field familiarize students with the intricacies of the process. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology or admission to the MS in Regulatory Sciene OR Masters of Biotechnology Enterprise and Entrepreneurship Programs.

    Technology Fees: $175.00

    410.632.81 - Emerging Infectious Diseases

    $4196

    Stacy Plum

    Online 5/30 - 8/21

    This course focuses on emerging infectious diseases from many different perspectives. The maladies addressed range from diseases that have reappeared in altered genetic forms, such as the influenza virus and the West Nile virus, to the lethal hemorrhagic fever caused by the Ebola virus. Also discussed is the threat of recombinant and ancient infectious agents such as Bacillus anthracis, causative agent of anthrax, which can be used in biological warfare weapons. Opinions from noted scientists and leaders concerning emerging diseases and the prospects for battling them successfully provide scientific and social perspective. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I

    Technology Fees: $175.00

    410.633.81 - Introduction to Bioinformatics

    $4196

    Jarrett Morrow

    Online 5/30 - 8/21

    Retrieval and analysis of electronic information are essential in today's research environment. This course explores the theory and practice of biological database searching and analysis. In particular, students are introduced to integrated systems where a variety of data sources are connected through World Wide Web access. Information retrieval and interpretation are discussed, and many practical examples in a computer laboratory setting enable students to improve their data mining skills. Methods included in the course are searching the biomedical literature, sequence homology searching and multiple alignment, protein sequence motif analysis, and several genome analytical methods. Classes are held in a computer laboratory. Acquaintance with computers is required. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology

    Technology Fees: $175.00

    410.633.82 - Introduction to Bioinformatics

    $4196

    Catherine Campbell

    Online 5/30 - 8/21

    Retrieval and analysis of electronic information are essential in today's research environment. This course explores the theory and practice of biological database searching and analysis. In particular, students are introduced to integrated systems where a variety of data sources are connected through World Wide Web access. Information retrieval and interpretation are discussed, and many practical examples in a computer laboratory setting enable students to improve their data mining skills. Methods included in the course are searching the biomedical literature, sequence homology searching and multiple alignment, protein sequence motif analysis, and several genome analytical methods. Classes are held in a computer laboratory. Acquaintance with computers is required. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology

    Technology Fees: $175.00

    410.633.83 - Introduction to Bioinformatics

    $4196

    Md Mizanur Rahman

    Online 5/30 - 8/21

    Retrieval and analysis of electronic information are essential in today's research environment. This course explores the theory and practice of biological database searching and analysis. In particular, students are introduced to integrated systems where a variety of data sources are connected through World Wide Web access. Information retrieval and interpretation are discussed, and many practical examples in a computer laboratory setting enable students to improve their data mining skills. Methods included in the course are searching the biomedical literature, sequence homology searching and multiple alignment, protein sequence motif analysis, and several genome analytical methods. Classes are held in a computer laboratory. Acquaintance with computers is required. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology

    Technology Fees: $175.00

    410.634.81 - Practical Computer Concepts for Bioinformatics

    $4196

    Joshua Orvis

    Online 5/30 - 8/21

    This course introduces students with a background in the life sciences to the basic computing concepts of the UNIX operating system, relational databases, structured programming, object-oriented programming, and the Internet. Included is an introduction to SQL and the Perl scripting language. The course emphasizes relevance to molecular biology and bioinformatics. It is intended for students with no computer programming background but with a solid knowledge of molecular biology. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology

    Technology Fees: $175.00

    410.634.82 - Practical Computer Concepts for Bioinformatics

    $4196

    Jarrett Morrow

    Online 5/30 - 8/21

    This course introduces students with a background in the life sciences to the basic computing concepts of the UNIX operating system, relational databases, structured programming, object-oriented programming, and the Internet. Included is an introduction to SQL and the Perl scripting language. The course emphasizes relevance to molecular biology and bioinformatics. It is intended for students with no computer programming background but with a solid knowledge of molecular biology. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology

    Technology Fees: $175.00

    410.638.81 - Cancer Biology

    $4196

    Meredith Safford

    Online 5/30 - 8/21

    This course provides students with knowledge of the fundamental principles of the molecular and cellular biology of cancer cells. Lectures and demonstrations explain the role of growth factors, oncogenes, tumor suppressor genes, angiogenesis, and signal transduction mechanisms in tumor formation. Discussion of aspects of cancer epidemiology, prevention, and principles of drug action in cancer management is part of the course. Prerequisites: All four core courses

    Technology Fees: $175.00

    410.639.81 - Protein Bioinformatics

    $4196

    Frank Lebeda
    Mark Olson

    Online 5/30 - 8/21

    Because the gap between the number of protein sequences and the number of protein crystal structures continues to expand, protein structural predictions are increasingly important. This course provides a working knowledge of various computer-based tools available for predicting the structure and function of proteins. Topics include protein database searching, protein physicochemical properties, secondary structure prediction, and statistical verification. Also covered are graphic visualization of the different types of three-dimensional folds and predicting 3-D structures by homology. Computer laboratories complement material presented in lectures. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.633 Introduction to Bioinformatics

    Technology Fees: $175.00

    410.640.81 - Molecular Phylogenetic Techniques

    $4196

    -STAFF-

    Online 5/30 - 8/21

    This course will provide a practical, hands-on introduction to the study of phylogenetics and comparative genomics. Theoretical background on molecular evolution will be provided only as needed to inform the comparative analysis of genomic data. The emphasis of the course will be placed squarely on the understanding and use of a variety of computational tools designed to extract meaningful biological information from molecular sequences. Lectures will provide information on the conceptual essence of the algorithms that underlie various sequence analysis tools and the rationale behind their use. Only programs that are freely available, as either downloadable executables or as Web servers, will be used in this course. Students will be encouraged to use the programs and approaches introduced in the course to address questions relevant to their own work. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.633 Introduction to Bioinformatics

    Technology Fees: $175.00

    410.645.81 - Biostatistics

    $4196

    William McCarthy

    Online 5/30 - 8/21

    This course introduces statistical concepts and analytical methods as applied to data encountered in biotechnology and biomedical sciences. It emphasizes the basic concepts of experimental design, quantitative analysis of data, and statistical inferences. Topics include probability theory and distributions; population parameters and their sample estimates; descriptive statistics for central tendency and dispersion; hypothesis testing and confidence intervals for means, variances, and proportions; the chi-square statistic; categorical data analysis; linear correlation and regression model; analysis of variance; and nonparametric methods. The course provides students a foundation to evaluate information critically to support research objectives and product claims and a better understanding of statistical design of experimental trials for biological products/devices. Prerequisites: Basic mathematics (algebra); scientific calculator

    Technology Fees: $175.00

    410.645.82 - Biostatistics

    $4196

    William McCarthy

    Online 5/10 - 8/21

    This course introduces statistical concepts and analytical methods as applied to data encountered in biotechnology and biomedical sciences. It emphasizes the basic concepts of experimental design, quantitative analysis of data, and statistical inferences. Topics include probability theory and distributions; population parameters and their sample estimates; descriptive statistics for central tendency and dispersion; hypothesis testing and confidence intervals for means, variances, and proportions; the chi-square statistic; categorical data analysis; linear correlation and regression model; analysis of variance; and nonparametric methods. The course provides students a foundation to evaluate information critically to support research objectives and product claims and a better understanding of statistical design of experimental trials for biological products/devices. Prerequisites: Basic mathematics (algebra); scientific calculator

    Technology Fees: $175.00

    410.648.81 - Clinical Trial Design and Conduct

    $4196

    Christopher Breder

    Online 5/30 - 8/21

    Through a case study approach, this course will cover the basic design issues of clinical trials, specifically targeting the Protocol, Case Report Forms, Analysis Plan, and Informed Consent. The design of a specific trial will be studied to illustrate the major issues in the design of a study, such as endpoint definition, control group selection, and eligibility criteria. The course will also cover the analysis plan for a study, including approaches that are central to clinical trials such as stratified analysis, adjustment factors, and “intention-to-treat” analysis. The planned analytical techniques will include the analysis of correlated data (i.e., clustered data, longitudinal data), survival analysis using the proportional hazards (Cox) regression model, and linear models. A semester-long project will include the creation of a Protocol, Case Report Forms, and Informed Consent. Prerequisites: 410.645 Biostatistics or equivalent (Required); 410.651 Clinical Development of Drugs and Biologics (Recommended)

    Technology Fees: $175.00

    410.649.81 - Introduction to Regulatory Affairs

    $4196

    Susan Zecchini

    Online 5/30 - 8/21

    Regulatory affairs (RA) comprise the rules and regulations governing product development and post-approval marketing. In the U.S., the FDA establishes and oversees the applicable regulations under several statutes, many regulations, and partnership with legislators, patients, and customers. Biotechnology products may be classified as drugs, biologics, or medical devices. Each type is regulated by a different center within the FDA. This course provides an overview of RA, its effect on product development. Topics include: RA history, regulatory agencies, how to access regulatory information, drug submissions, biologics submissions, medical device submissions, GLP, GCP, GMP, and FDA inspections. (Research Adminstration elective. Prerequisites in Biotechnology apply. Contact the director of the MS in Research Admin).

    Technology Fees: $175.00

    410.649.82 - Introduction to Regulatory Affairs

    $4196

    Alison St John

    Online 5/30 - 8/21

    Regulatory affairs (RA) comprise the rules and regulations governing product development and post-approval marketing. In the U.S., the FDA establishes and oversees the applicable regulations under several statutes, many regulations, and partnership with legislators, patients, and customers. Biotechnology products may be classified as drugs, biologics, or medical devices. Each type is regulated by a different center within the FDA. This course provides an overview of RA, its effect on product development. Topics include: RA history, regulatory agencies, how to access regulatory information, drug submissions, biologics submissions, medical device submissions, GLP, GCP, GMP, and FDA inspections. (Research Adminstration elective. Prerequisites in Biotechnology apply. Contact the director of the MS in Research Admin).

    Technology Fees: $175.00

    410.651.81 - Clinical Development of Drugs and Biologics

    $4196

    Jonathan Helfgott
    Michael Marcarelli

    Online 5/30 - 8/21

    This course introduces students to the planning and work required to develop potential new drugs and biologics efficiently. Students gain a thorough appreciation of FDA and ICH regulations and guidelines. Because the course emphasizes the importance of planning before the execution of any of the necessary steps, lectures use a "backwards" approach, discussing the final analysis and report before developing protocols. Topics also include an overview of preclinical investigations; NDA/BLA format and content; clinical development plans; product and assay development; the IND; and trial design, implementation, and management. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology or admission to the MS in Regulatory Science OR Masters of Biotechnology Enterprise and Entrepreneurship programs.

    Technology Fees: $175.00

    410.651.82 - Clinical Development of Drugs and Biologics

    $4196

    Bharat Khurana

    Online 5/30 - 8/21

    This course introduces students to the planning and work required to develop potential new drugs and biologics efficiently. Students gain a thorough appreciation of FDA and ICH regulations and guidelines. Because the course emphasizes the importance of planning before the execution of any of the necessary steps, lectures use a "backwards" approach, discussing the final analysis and report before developing protocols. Topics also include an overview of preclinical investigations; NDA/BLA format and content; clinical development plans; product and assay development; the IND; and trial design, implementation, and management. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology or admission to the MS in Regulatory Science OR Masters of Biotechnology Enterprise and Entrepreneurship programs.

    Technology Fees: $175.00

    410.673.81 - Biological Processes in Regulatory Affairs

    $4196

    Jamie Austin

    Online 5/30 - 8/21

    This course provides an overview of the biological processes and laboratory techniques utilized for the discovery, development and evaluation of therapeutic drugs. Students investigate drug development processes such as gene cloning, culture scale-up, downstream processing, and product purification. Emphasis is placed on the theory and application of laboratory methods used in drug development, such as recombinant DNA techniques, antibody technology, protein purification, immunoassays, high-throughput drug screening, chromatography, electrophoresis, cell receptor characterization, pharmacokinetics, drug toxicity testing and evaluation of therapeutic drugs, diagnostics, and vaccines. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology or admissions to the MS in Regulatory Science OR Masters of Biotechnology Enterprise and Entrepreneurship Programs.

    Technology Fees: $175.00

    410.673.82 - Biological Processes in Regulatory Affairs

    $4196

    Markus Yap

    Online 5/30 - 8/21

    This course provides an overview of the biological processes and laboratory techniques utilized for the discovery, development and evaluation of therapeutic drugs. Students investigate drug development processes such as gene cloning, culture scale-up, downstream processing, and product purification. Emphasis is placed on the theory and application of laboratory methods used in drug development, such as recombinant DNA techniques, antibody technology, protein purification, immunoassays, high-throughput drug screening, chromatography, electrophoresis, cell receptor characterization, pharmacokinetics, drug toxicity testing and evaluation of therapeutic drugs, diagnostics, and vaccines. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology or admissions to the MS in Regulatory Science OR Masters of Biotechnology Enterprise and Entrepreneurship Programs.

    Technology Fees: $175.00

    410.675.81 - International Regulatory Affairs

    $4196

    Suzanne Fitzpatrick

    Online 5/30 - 8/21

    The pharmaceutical/biotechnology product approval and marketing requires a good understanding of international regulatory affairs in order to successfully compete in today's global market place. It is important for tomorrow's leaders to understand and follow the regulatory differences to ensure optimum product development strategies, regulatory approvals and designs for exports conforming to the foreign regulatory bodies. There are various product development strategies that industry is using to shorten the product development time by conducting preclinical programs outside the US, however, the strategy requires a careful planning and interaction with the US and foreign regulatory agencies. With the increase in globalization of economy and exports, international regulations will have a bigger impact on the biotechnology business in the future. The course provides a review and analysis of the pharmaceutical/biotechnology product approval processes within the world's major markets. The key strategies required in preclinical product development to marketing approval of the products in Europe, Japan, and the US will be compared and discussed. Students will explore the European Union (EU) regulations and their overall importance on international markets. The course will cover the salient features of common technical and regulatory documents required for submission and approval to the leading regulatory bodies in the world, general guidance documents, International Harmonization, and General Agreement on Tariffs and Trade (GATT).

    Technology Fees: $175.00

    410.676.81 - Food And Drug Law

    $4196

    Loretta Chi

    Online 5/30 - 8/21

    The Food, Drug, and Cosmetic Act (FD&C Act) governs the regulatory approval process for bringing a drug, biologic, medical device, food, or cosmetic to market. The class will discuss administrative procedures followed by the FDA. The course includes an overview of the drug, biologic and medical device approval processes and the regulation of food and dietary supplements. Students then will be exposed to the enforcement activities of the FDA, including searches, seizure actions, injunctions, criminal prosecutions, and civil penalties authorized under the FD&C Act, as well as other statutes like the Public Health Service Act (which regulates the development and approval of biologics).

    Technology Fees: $175.00

    410.676.82 - Food And Drug Law

    $4196

    Emil Wang

    Online 5/30 - 8/21

    The Food, Drug, and Cosmetic Act (FD&C Act) governs the regulatory approval process for bringing a drug, biologic, medical device, food, or cosmetic to market. The class will discuss administrative procedures followed by the FDA. The course includes an overview of the drug, biologic and medical device approval processes and the regulation of food and dietary supplements. Students then will be exposed to the enforcement activities of the FDA, including searches, seizure actions, injunctions, criminal prosecutions, and civil penalties authorized under the FD&C Act, as well as other statutes like the Public Health Service Act (which regulates the development and approval of biologics).

    Technology Fees: $175.00

    410.679.81 - Practicum in Regulatory Science

    $4196

    Thomas Colonna

    Online 5/30 - 8/21

    This integrative case-based course will focus on applying knowledge gained from previous courses in the MS Bioscience Regulatory Affairs program to actual cases from the U.S. Food and Drug Administration. For each case, students will assume the role of regulatory specialist, an FDA reviewer or senior-level policy-maker, or other involved stakeholders, such as a consumer group or an advocacy group. Students will be expected to research, evaluate, and present scientifically and legally justifiable positions on case studies from the perspective of their assigned roles. Students will present their perspectives to the class and be asked to debate the issues with the other students from the perspective of their assigned roles. The major responsibility of the students in this course will be to make scientifically and legally defensible recommendations and to justify them through oral and written communication. Please note this course is only open to students in the MS in Bioscience Regulatory Affairs and should only be taken after all required courses are completed.

    Technology Fees: $175.00

    410.682.81 - Validation in Biotechnology

    $4196

    Jonathan Helfgott

    Online 5/30 - 8/21

    Understanding validation and applying a comprehensive validation philosophy are essential in today's biotechnology industry. First and foremost, validation allows a company to operate in compliance with the regulations and guidance set forth by FDA. Perhaps more importantly, it results in equipment, assays, and processes that are well understood and robust, less prone to failure, and more cost-effective. This course will introduce the fundamentals of validation, validation master planning, resource management, types of validation and the associated documentation, departmental roles and interaction, and the differences between commissioning and validation. Students will have an opportunity to solve real-world problems, generate actual validation documents, and develop validation program elements that balance regulatory requirements, operational needs, and business expectations.

    Technology Fees: $175.00

    410.683.81 - Introduction to cGMP Compliance

    $4196

    Nancy Karaszkiewicz

    Online 5/30 - 8/21

    Current Good Manufacturing Practice regulations are the minimum standards for the design, production, and distribution of drugs, biologics and medical devices in the U.S. and internationally. In the U.S., they are codified at the federal level, in the FD&C Act and the CFR, and actively enforced by FDA. These regulations, however, only begin to describe the practices used in the pharmaceutical and biotech industries. Additional sources of insight and guidance include FDA's guidance documents and training manuals, industry trade publications, international compendia, and standards-setting organizations. Students will learn the scope and history of the regulations, industry-standard implementation strategies and "best-practices" approaches, and FDA's current expectations. Students will also learn to apply practical solutions to the regulatory issues faced in the pharmaceutical and biotech industries today.

    Technology Fees: $175.00

    410.683.82 - Introduction to cGMP Compliance

    $4196

    Nancy Karaszkiewicz

    Online 5/30 - 8/21

    Current Good Manufacturing Practice regulations are the minimum standards for the design, production, and distribution of drugs, biologics and medical devices in the U.S. and internationally. In the U.S., they are codified at the federal level, in the FD&C Act and the CFR, and actively enforced by FDA. These regulations, however, only begin to describe the practices used in the pharmaceutical and biotech industries. Additional sources of insight and guidance include FDA's guidance documents and training manuals, industry trade publications, international compendia, and standards-setting organizations. Students will learn the scope and history of the regulations, industry-standard implementation strategies and "best-practices" approaches, and FDA's current expectations. Students will also learn to apply practical solutions to the regulatory issues faced in the pharmaceutical and biotech industries today.

    Technology Fees: $175.00

    410.684.81 - Technology Transfer & Commercialization

    $4196

    Jill Sorensen

    Online 5/30 - 8/21

    This course is an introduction to the multidisciplinary aspects involved in the process of bringing technical developments, particularly research emanating from universities and other nonprofit organizations, into commercial use. The course will provide an overview of the key policies, concepts, tools, issues, practices, and trends that are shaping the technology transfer field, with an emphasis on the life sciences sector.

    Technology Fees: $175.00

    410.694.81 - FDA Premarket Applications

    $4196

    Emil Wang

    Online 5/30 - 8/21

    This course provides a comprehensive overview of the U.S. Food and Drug Administration’s (FDA’s) regulation of the research and development, and marketing of new drugs, biologics, and medical devices. The regulatory requirements for investigational (Investigational New Drug (IND) and Investigational Device Exemption (IDE)) and premarket approval (New Drug Application (NDA), Abbreviated New Drug Application (ANDA), Biologics License Application (BLA), premarket notification (510(k)), Premarket Approval (PMA)) applications will be addressed. The content and format requirements for the preparation, submission, and maintenance of these applications will be covered.

    Technology Fees: $175.00

    410.698.81 - Bioperl

    $4196

    Andrei Mamoutkine

    Online 5/30 - 8/21

    This course builds on the Perl concepts taught in 410.634 Practical Computer Concepts for Bioinformatics. Perl has emerged as the language of choice for the manipulation of bioinformatics data. Bioperl, a set of object-oriented modules that implements common bioinformatics tasks, has been developed to aid biologists in sequence analysis. The course will include an overview of the principal features of Bioperl and give students extensive opportunity to use Perl and the tools of Bioperl to solve problems in molecular biology sequence analysis. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.634 Practical Computer Concepts for Bioinformatics

    Technology Fees: $175.00

    410.700.81 - Food Labeling and Packaging Regulations

    $4196

    Michelle Wright

    Online 5/30 - 8/21

    The Nutrition Labeling and Education Act of 1990 (NLEA), which amended the FD&C Act requires most foods to bear nutrition labeling and requires food labels that bear nutrient content claims and certain health messages to comply with specific requirements. The NLEA and the final regulations to implement the NLEA, provide for a number of fundamental changes in how food is labeled, including requiring that nutrition labeling be placed on most foods, requiring that terms that characterize the level of nutrients in a food be used in accordance with definitions established by FDA, and providing for the use of claims about the relationship between nutrients and diseases or health-related conditions. These changes apply to virtually all foods in the food supply, including, in large measure, to foods sold in restaurants. Food labeling is required for most prepared foods, such as breads, cereals, canned and frozen foods, snacks, desserts, drinks, etc. Nutrition labeling for raw produce (fruits and vegetables) and fish is voluntary.

    Technology Fees: $175.00

    410.702.81 - Biomedical Software Regulation

    $4196

    Jonathan Helfgott
    Thomas Colonna

    Online 5/30 - 8/21

    Software continually grows more complex and is becoming relied upon by healthcare professionals in the treatment of patients. This course describes how the U.S. government regulates software used in delivering healthcare including the regulations utilized by the Food and Drug Administration (FDA), as well as, the Center for Medicare and Medicaid Services (CMS). This course covers a wide range of topics, including: FDA regulation of software as a medical device and software validation, medical imaging software regulation, electronic recordkeeping and software used in clinical trials, laboratory information management systems (LIMS), and HIPAA privacy rules and security standards.

    Technology Fees: $175.00

    410.704.81 - Social Entrepreneurship in BioScience

    $4196

    Katherine Wellman

    Online 5/30 - 8/21

    This course will explore how biotechnology innovators are solving social issues including developing medical diagnostics, discovering effective and safer medicine, producing cleaner energy, remediating environmental contamination and improving crop yields. Students will think broadly in terms of roles required in tackling these social, economic, health and environmental issues and how they can add value to society. This course will cover social entrepreneurship principles and practices in a range of sectors including corporate social responsibility and public value missions in emerging markets. Students will have opportunities to define their role in advancing biotechnology as it relates to the top global challenges

    Technology Fees: $175.00

    410.708.81 - Medical Product Reimbursement

    $4196

    Rochelle Fink

    Online 5/30 - 8/21

    Medical products brought to market need to have a sound payment, coding, and coverage strategy. Medicare covers over 100 million Americans and it leads the way in all United States insurance policies. This course will provide insight into how medical product reimbursement works and allow students to understand how the Centers for Medicare & Medicaid Services (CMS) considers medical products for coverage, coding, and payment. We’ll review the history of Medicare coverage and the regulations. We’ll focus primarily on strategies used to get reimbursement for medical products—both at the national and local levels.

    Technology Fees: $175.00

    410.712.81 - Advanced Practical Computer Concepts for Bioinformatics

    $4196

    Joshua Orvis

    Online 5/30 - 8/21

    This intermediate-to-advanced-level course, intended as a follow-on to 410.634 Practical Computer Concepts for Bioinformatics (a prerequisite for this new class), will integrate and expand on the concepts from that introductory class to allow students to create working, Web-based bioinformatics applications in a project-based course format. After a review of the concepts covered in 410.634, students will learn how to create functional Web applications on a UNIX system, using Perl and CGI to create forms that can be acted upon, and using the Perl DBI module to interface with MySQL relational databases that they will create and populate to retrieve and present information. This will be demonstrated by building an in-class, instructor led project. More advanced SQL concepts and database modeling will also be covered, as well as introductions to HTML5, CSS3 and Javascript. Class time in the latter weeks of the class will be devoted to individual assistance on student projects as well as to short lectures on advanced topics. Once again, whenever possible, this course will emphasize relevance to solving problems in molecular biology and bioinformatics. Pre-requisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.634 Practical Computer Concepts

    Technology Fees: $175.00

    410.715.81 - Medical Device Regulation

    $4196

    David Locke

    Online 5/30 - 8/21

    This course provides a comprehensive introduction into medical devices and how they are regulated by the US Food and Drug Administration (FDA). Topics that will be covered include: (1) an overview of the laws and regulations that govern medical devices; (2) FDA's organizational structure and responsibilities for medical device regulation; and (3) administrative and legal requirements for medical devices throughout the full product life-cycle. Particular focus will be placed on the premarket review, postmarket programs enforcement (e.g., Quality System regulation, and FDA inspectional programs). Included will be discussions on the responsible offices and major program requirements and resources. Students will be given various case studies to examine the application of regulations, as well as, participate in a 510(k)/PMA workshop, mock inspectional audit, and a mock enforcement action. Upon completion of this course, the student will have a working knowledge of the requirements and policies of FDA regulation of medical devices.

    Technology Fees: $175.00

    410.716.81 - Food Toxicology

    $4196

    Suzanne Fitzpatrick

    Online 5/30 - 8/21

    Food toxicology is the study of the nature, properties, effects, and detection of toxic substances in food, and their disease manifestation in humans. This course will provide a general understanding of toxicology related to food and the human food chain. Fundamental concepts will be covered including dose-response relationships, absorption of toxicants, distribution and storage of toxicants, biotransformation and elimination of toxicants, target organ toxicity, teratogenesis, mutagenesis, carcinogenesis, food allergy, and risk assessment. The course will examine chemicals of food interest such as food additives, mycotoxins, and pesticides, and how they are tested and regulated.

    Technology Fees: $175.00

    410.717.81 - Risk Assessment and Management

    $4196

    Calvin Chue

    Online 5/30 - 8/21

    Risk analysis is composed of three separate but integrated elements, namely risk assessment, risk management and risk communication. Risk communication is an interactive process of exchange of information and opinion on risk among risk assessors, risk managers, and other interested parties. Risk management is the process of weighing policy alternatives in the light of the results of risk assessment and, if required, selecting and implementing appropriate control options, including regulatory measures. Students will learn how to integrate risk assessment, risk management, and risk communication using case studies.

    Technology Fees: $175.00

    410.721.81 - In Vitro Diagnostic Regulation

    $4196

    Timothy Alcorn

    Online 5/30 - 8/21

    This course provides a comprehensive overview of in vitro diagnostic (IVD) devices and how they are regulated by the U.S. Food and Drug Administration (FDA) and internationally, including the European Union (E.U.). Topics that will be covered include: (1) a summary of the U.S. and international laws, regulations, and policies that govern IVD devices, (2) administrative and legal requirements and resources for IVD devices throughout the full product life-cycle, (3) types of IVD devices, (4) coverage and reimbursement of laboratory tests, and (5) current issues and developments. Upon completion of this course, the student will have a working knowledge of the requirements and policies of the regulation of IVD devices.

    Technology Fees: $175.00

    410.727.81 - Regulatory Strategies in Biopharmaceuticals

    $4196

    Bharat Khurana

    Online 5/30 - 8/21

    Given the costly drug-development process and the limited resources of emerging biopharmaceutical companies, developing an early regulatory strategy- starting well before clinical trials are initiated, is extremely important for the success of a company. This course will discuss different regulatory strategies that several players of the US biopharmaceutical industry have employed. Students will learn about interacting with regulatory agencies, the orphan drug development, accelerated approval, fast track, priority review, and other regulatory mechanisms, pharmacogenomics and biomarkers, adaptive clinical trials, animal rule, generic drug development and biosimilars. Using case studies, the impact of these regulatory strategies on drug development and how these strategies have helped many biopharmaceutical companies will be discussed. At the end of this course, students will better understand federal regulations and the aspects involved in developing efficient regulatory strategies.

    Technology Fees: $175.00

    410.732.81 - Funding a New Venture

    $4196

    Norman Marcus

    Online 5/30 - 8/21

    This course is designed to introduce students to the new venture creation, concept pitching and company funding processes from a venture capital perspective. Students will learn how to take a new idea, technology or business model and evaluate its merits for forming a new biotech venture. Students will also engage in projects and real-world experiences to learn how to develop a business plan for presentation to potential investors. The class will also utilize case studies and guest speakers to provide insight into how entrepreneurs successfully pitch their ventures to investors to obtain funding for building new companies.

    Technology Fees: $175.00

    410.753.81 - Stem Cell Biology

    $4196

    Melinda Maris

    Online 5/30 - 8/21

    This course will involve discussion and debate on current topics concerning stem cell biology and the use of stem cells in biotechnology and therapeutics. Topics will include review and discussion of developmental and cell biology, stem cell characteristics, stem cell preparation and therapeutic uses, tissue engineering, global regulatory and ethical issues, and commercialization of stem cell therapy. Current peer-reviewed literature and guest experts in the field will provide up to date information for discussion. Prerequisites: All four core courses.

    Technology Fees: $175.00

    410.802.81 - Independent Studies in Regulatory Science

    $4196

    Thomas Colonna

    Online 5/30 - 8/21

    Students in the bioscience regulatory affairs program have the opportunity to enroll in an independent study course. This elective course is an option after a student has completed at least five graduate-level courses and has compiled a strong academic record. Prior to proposing a project, interested students must have identified a study topic and a mentor who is familiar with their prospective inquiry and who is willing to provide guidance and oversee the project. The study project must be independent of current work-related responsibilities as determined by the project mentor. The mentor may be a faculty member teaching in the bioscience regulatory affairs program, a supervisor from the student's place of work, or any expert with appropriate credentials. The goal of the study project should be a "publishable" article. Students are required to submit a formal proposal for review and approval by the bioscience regulatory affairs program committee. The proposal must be received by the Advanced Academic Programs office no later than one month prior to the beginning of the term in which the student wants to enroll in the course. Students must meet with a member of the program committee periodically for discussion of the project's progress, and a written document must be completed and approved by the program committee and project mentor for the student to receive graduate credit. Additional guidelines can be obtained from the AAP administrative office. This course is open only to students in the MS in Bioscience Regulatory Affairs program or the MS in Biotechnology with a concentration in Regulatory Affairs and may be taken only after 5 courses have been completed.

    Technology Fees: $175.00