Course Schedule

The courses below are those offered for the term. (To view the course description, class dates & times, touch on accordion tab by the title.)

State-specific Information for Online Programs

Note: Students should be aware of state-specific information for online programs. For more information, please contact an admissions representative.

  • Homewood Campus

    410.602.01 - Molecular Biology

    $4322

    Robert Horner

    Tuesday 6:00 - 9:50; 6/5 - 8/21

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA. S

    410.603.01 - Advanced Cell Biology I

    $4322

    Michael Lebowitz

    Wednesday 6:00 - 9:50; 5/30 - 8/22

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation. S

    410.604.01 - Advanced Cell Biology II

    $4322

    Michael Lebowitz

    Thursday 6:00 - 9:50; 5/31 - 8/16

    This course is a continuation of 410.603 Advanced Cell Biology and further explores cell organization and subcellular structure Students examine cell-to-cell signaling that involves hormone and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathway to oncogenes is and other disease states will be stressed. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    410.643.01 - Managing and Leading Biotechnology Professionals

    $4322

    Bonnie Robeson

    Tuesday 6:00 - 9:15; 5/8 - 5/22
    Thursday 6:00 - 8:45; 5/10 - 5/24
    Saturday 9:00 - 4:00; 5/12 - 5/19

    The roles of managers and leaders within biotechnology companies undergo constant change. Biotechnology manager and leaders must engage in new and innovative problem- solving strategies; lead a diverse and global workforce; develop partnerships with other businesses, customers, and competitors manage horizontally and across teams; and utilize technology a competitive advantage. The student is able to address cure challenges in his/her own organization and learn methods of implementing change, such as negotiation techniques and motivation. The course includes in-depth discussions of leadership skills, communication, conflict resolution, and goa integration. Students research a biotechnology organization, analyze what is working and not working within the management systems, and suggest alternatives.

    The final Saturday will be conducted online.

    410.751.01 - Chemical Libraries & Diversity

    $4322

    Takashi Tsukamoto

    Tuesday 6:00 - 9:15; 6/5 - 8/21

    Chemical diversity and “pharmacological space” will be studied, with an emphasis on disciplines related to drug discovery. Medicinal chemistry, natural product chemistry, focused synthetic libraries, and combinatorial chemistry will be covered. Lipinski’s rules for drug like molecules will be discussed in detail, as well as methods for chemical analysis, in silicon drug design, molecular modeling, and compound storage and handling. In addition, techniques used for assessing and harnessing chemical diversity for drug discovery will be discussed. Prerequisites: All four core courses or approval of program committee. S

    Technology Fee: $175.00

  • Montgomery County Campus

    410.601.71 - Biochemistry

    $4322

    Elena Schwartz

    Monday 6:00 - 9:50; 6/4 - 8/20

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology. S

    410.601.72 - Biochemistry

    $4322

    Michael Lebowitz

    Tuesday 6:00 - 9:50; 6/5 - 8/21

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology. S

    410.602.71 - Molecular Biology

    $4322

    Stacy Plum

    Thursday 6:00 - 9:50; 5/31 - 8/16

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA. S

    410.603.71 - Advanced Cell Biology I

    $4322

    Elena Schwartz

    Tuesday 6:00 - 9:50; 6/5 - 8/21

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation. S

    410.603.72 - Advanced Cell Biology I

    $4322

    Mary Donohue,

    Wednesday 6:00 - 9:50; 5/30 - 8/22

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation. S

    410.603.73 - Advanced Cell Biology I

    $4322

    Thomas Koval

    Wednesday 6:00 - 9:50; 5/30 - 8/22

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation. S

    410.658.71 - Biodefense & Infectious Disease Laboratory Methods

    $4322

    Kristina Obom
    Meredith Safford

    Monday 9:00 - 5:00; 5/30 - 8/20
    Tuesday 9:00 - 5:00; 7/31 - 6/5
    Wednesday 9:00 - 5:00; 8/1 - 6/6
    Thursday 9:00 - 5:00; 8/2 - 6/7
    Friday 9:00 - 5:00; 8/3 - 7/12

    This laboratory course introduces students to the methods and techniques used for bio threat detection, surveillance, and identification. Using bio simulants and demonstrations, various bio detection platforms will be discussed and presented, such as point-of-detection devices and methods, laboratory-based screening and identification technologies (culture, quantitative PCR, immunoassays, biosensors), and high-throughput environmental surveillance methods. Statistical methods for determining diagnostic sensitivity and specificity and assay validity will be discussed. Laboratory practices and procedures for working in simulated Biosafety Level 2 and 3 environments will be practiced. Students will be introduced to the current bioinformatics genomic and proteomic databases used for select agent (category A, B, and C) identification and characterization. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I, undergraduate microbiology or 410.615 Microbiology, or approval of program committee. S

    Summer I 410.658. 71 Biodefense Lab Methods (Obom and Safford) Online 5/30 – 6/11 Onsite Montgomery County Lab 6/11 through 6/15 9 am – 5 pm Online 6/16- 7/12

    410.706.71 - Building and Leading Teams in Health Care

    $4322

    Admon Alexander

    Thursday 6:00 - 9:50; 5/31 - 8/16

    In order to provide the best care possible, health care professionals are working together more now than ever before. As a result, strong leadership and teamwork skills are becoming necessities in joining the health care field. This course will provide hands-on activities to help students develop problem solving skills, learn basic negotiation and mediation strategies and understand their own tendencies as leaders and team members. Using real-world examples, students will explore how strong leadership and teamwork can drive innovative solution to public health issues.

    410.780.71 - Stem Cell Culture Laboratory Methods

    $4322

    Jamie Austin
    Kristina Obom

    Monday 9:00 - 5:00; 7/16 - 7/23
    Tuesday 9:00 - 5:00; 7/24 - 7/24
    Wednesday 9:00 - 5:00; 7/25 - 7/25
    Thursday 9:00 - 5:00; 7/26 - 7/26
    Friday 9:00 - 5:00; 7/27 - 8/10

    This laboratory course introduces students to the cultivation and differentiation of stem cells.  Students are introduced to cell cultivation methods, for three types of stem cells and the basics of tissue engineering. Students will scale-up cells into mini-bioreactors for large scale use.  The class will include industry wide practices in cGMP. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I; 410.652 Cell Culture Techniques or permission of program committee. S

    This is a compressed hybrid lab course that will be online and onsite. The schedule is as follows: Online 7/12 – 7/30 Onsite Montgomery County Lab 7/30 through 8/3 Online 8/4 through 8/20

    410.800.71 - Independent Research in Biotechnology

    $4322

    Thomas Koval

    Sunday 12:00 - 12:00; 5/30 - 8/22

    Students in the biotechnology program have the opportunity to enroll in an independent research course. This elective course is an option after a student has completed at least eight-level courses and has compiled a strong academic record. Prior to proposing a project, interested students must have identified a research topic and a mentor who is familiar with their prospective inquiry, and who is willing to provide guidance and oversee the project. The research project must be independent of current work-related responsibilities as determined by the project mentor. The mentor may be a faculty member teaching in the biotechnology program, a supervisor from the student’s place of work, or any expert with appropriate credentials. Students are required to submit a formal proposal for review and approval by the biotechnology program committee. The proposal must be received by the Advanced Academic Programs office no later than one month prior to the beginning of the term in which the student wants to enroll in the course. Students must meet with a member of the program committee periodically for discussion of the project’s progress and a written document must be completed and approved by the program committee and project mentor for the student to receive graduate credit. Additional guidelines can be obtained from the AAP administrative office. Prerequisite: All core courses and four additional courses. S

    Please contact instructor before registering for the class. tkoval@jhu.edu

    410.801.71 - Biotechnology Thesis

    $4322

    Kristina Obom

    Sunday 12:00 - 12:00; 5/30 - 8/30

    Students wishing to complete a thesis may do so by embarking on a two-semester thesis project, which includes 410.800 Independent Research Project and 410.801 Biotechnology Thesis courses. This project must be a hypothesis-based, original research study. The student must complete 410.800 Independent Research Project and fulfill the requirements of that course, including submission of project proposal, final paper, and poster presentation, before enrolling in the subsequent thesis course. For the thesis course, students are required to submit a revised proposal (an update of the 410.800 proposal) for review and approval by the faculty adviser and biotechnology program committee one month prior to the beginning of the term. Students must meet the faculty adviser periodically for discussion of the project’s progress. Graduation with a thesis is subject to approval by the thesis committee and program committee, and requires the student to present his/her project to a faculty committee both orally and in writing. Prerequisites: Successful completion of 410.800 Independent Research Project and 410.645 Biostatistics.

    Please contact instructor before registering for the course. kobom@jhu.edu

  • Online Courses

    410.302.81 - Bio-Organic Chemistry

    $4322

    Kenneth Thompson

    Online 5/30 - 8/22

    This course provides a foundation in structural organic chemistry, acid base chemistry, chemical thermodynamics, and reaction mechanisms. Subjects include Lewis structures, atomic and hybridized orbitals, stereochemistry, inter- and intramolecular forces of attraction, neucleophilic reaction mechanisms, functional groups, and the organic chemistry of biological molecules. Please note that this course does not count toward requirements for the master’s degree in biotechnology. Prerequisite: two semesters of college chemistry. S

    Technology Fee: $175.00

    410.303.81 - Foundations in Bioscience

    $4322

    Weiying Pan

    Online 5/30 - 8/22

    This course examines the fundamental underlying scientific concepts utilized in the creation and development of biomedical products. Topics to be covered include the structure and function of biomolecules, such as proteins, enzymes, carbohydrates, lipids, and DNA, as well as the structure and function of cellular components, such as membranes, vesicles, organelles, and the cytoskeleton. In addition, students will examine the complexities of metabolism, DNA replication, transcription, translation, signal transduction mechanisms, apoptosis, the cell cycle, and cancer. Please note that this course does not count toward requirements for the master’s degree in either biotechnology or regulatory science and is required as a prerequisite course for some students entering the Master of Science in Regulatory Science. S

    Technology Fee: $175.00

    410.601.81 - Biochemistry

    $4322

    Karen Wells

    Online 5/30 - 8/22

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology. S

    Technology Fee: $175.00

    410.601.82 - Biochemistry

    $4322

    Satarupa Das

    Online 5/30 - 8/22

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology. S

    Technology Fee: $175.00

    410.601.83 - Biochemistry

    $4322

    Satarupa Das

    Online 5/30 - 8/22

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology. S

    Technology Fee: $175.00

    410.601.84 - Biochemistry

    $4322

    Tyler Chavez

    Online 5/30 - 8/22

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology. S

    Technology Fee: $175.00

    410.602.81 - Molecular Biology

    $4322

    Valerie Divito

    Online 5/30 - 8/22

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA. S

    Technology Fee: $175.00

    410.602.82 - Molecular Biology

    $4322

    Robert Webb

    Online 5/30 - 8/22

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA. S

    Technology Fee: $175.00

    410.602.83 - Molecular Biology

    $4322

    Roza Selimyan

    Online 5/30 - 8/22

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA. S

    Technology Fee: $175.00

    410.602.84 - Molecular Biology

    $4322

    Dr. Mark Hollier

    Online 5/30 - 8/22

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA. S

    Technology Fee: $175.00

    410.603.81 - Advanced Cell Biology I

    $4322

    Laundette Jones

    Online 5/30 - 8/22

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation. S

    Technology Fee: $175.00

    410.603.82 - Advanced Cell Biology I

    $4322

    Mark Verdecia

    Online 5/30 - 8/22

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation. S

    Technology Fee: $175.00

    410.603.83 - Advanced Cell Biology I

    $4322

    Jeffrey Mahr

    Online 5/30 - 8/22

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation. S

    Technology Fee: $175.00

    410.604.81 - Advanced Cell Biology II

    $4322

    Dr. Jonathon Bennett

    Online 5/30 - 8/22

    This course is a continuation of 410.603 Advanced Cell Biology and further explores cell organization and subcellular structure Students examine cell-to-cell signaling that involves hormone and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathway to oncogenes is and other disease states will be stressed. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    Technology Fee: $175.00

    410.604.82 - Advanced Cell Biology II

    $4322

    Lisa Selbie

    Online 5/30 - 8/22

    This course is a continuation of 410.603 Advanced Cell Biology and further explores cell organization and subcellular structure Students examine cell-to-cell signaling that involves hormone and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathway to oncogenes is and other disease states will be stressed. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    Technology Fee: $175.00

    410.604.83 - Advanced Cell Biology II

    $4322

    Lisa Selbie

    Online 5/30 - 8/22

    This course is a continuation of 410.603 Advanced Cell Biology and further explores cell organization and subcellular structure Students examine cell-to-cell signaling that involves hormone and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathway to oncogenes is and other disease states will be stressed. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    Technology Fee: $175.00

    410.610.81 - Epigenetics, Gene Organization & Expression

    $4322

    Jonathan Lochamy

    Online 5/30 - 8/22

    Students use genetic analysis and molecular biology techniques to investigate chromosome organization, chromatin structure, functional genomics, and mechanisms of differential gene expression. Other topics include DNA methylation, silencers, enhancers, genomic imprinting, and microarray analysis. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology. S

    Technology Fee: $175.00

    410.610.82 - Epigenetics, Gene Organization & Expression

    $4322

    Md Mizanur Rahman

    Online 5/30 - 8/22

    Students use genetic analysis and molecular biology techniques to investigate chromosome organization, chromatin structure, functional genomics, and mechanisms of differential gene expression. Other topics include DNA methylation, silencers, enhancers, genomic imprinting, and microarray analysis. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology. S

    Technology Fee: $175.00

    410.612.81 - Human Molecular Genetics

    $4322

    Erin Morrey

    Online 5/30 - 8/22

    In this course, students learn to use the tools of modern genomics to elucidate phenotypic variation within populations. The course uses human disease (from simple Mendelian disorders to common, complex disorders) to exemplify the types of studies and tools that can be used to characterize cellular pathophysiology as well as to provide genetic diagnostics and therapies. Students become facile with linkage analysis, cancer genetics, microarray analysis (oligo and DNA arrays), gene therapy, SNP studies, imprinting, disequilibrium mapping, and ethical dilemmas associated with the Human Genome Project. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology. S

    Technology Fee: $175.00

    410.613.81 - Principles of Immunology

    $4322

    Patrick Cummings

    Online 5/30 - 8/22

    This course covers molecular and cellular immunology. Topics include innate immunity, adaptive immunity, the development and function of B cell and T cell antigen receptors, the major histocompatibility complexes, innate effector mechanisms, humoral and cellular immune responses, and regulation of immune responses. Special topics include immunomodulation, immunodeficiency diseases, autoimmunity, evasion and subversion of the immune system by pathogens, immunotherapies, and vaccines. Students are also introduced to the applied aspects of immunology, which include protein and cellular based immunoassays. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    Technology Fee: $175.00

    410.616.81 - Virology

    $4322

    Bruce Brown

    Online 5/30 - 8/22

    This course covers the advanced study of viruses with regard to the basic, biochemical, molecular, epidemiological, clinical, and biotechnological aspects of animal viruses primarily, and bacteriophage, plant viruses, viroid’s, prions, and unconventional agents secondarily. Specific areas of virology, including viral structure and assembly, viral replication, viral recombination and evolution, virus-host interactions, viral transformation, gene therapy, antiviral drugs, and vaccines, are presented. The major animal virus families are discussed individually with respect to classification, genomic structure, viroid structure, virus cycle, pathogenesis, clinical features, epidemiology, immunity, and control. The viral vectors and their application in biotechnology are discussed. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    Technology Fee: $175.00

    410.621.81 - Agricultural Biotechnology

    $4322

    Sherry Ogg

    Online 5/30 - 8/22

    In this course, students are introduced to the application of recombinant DNA technology to agriculture. Studied are methods for the introduction of foreign DNA into plant and animal cells and generation of stably transformed plants and animals. Students consider specific examples of the use of transgenic plants and animals in biotechnology, which can provide protection against insects, diseases, and tolerance to specific herbicides. They also investigate how recombinant growth hormones can result in leaner meat, greater milk yield, and better feed utilization, and how transgenic plants and animals can serve as bioreactors for the production of medicinals or protein pharmaceuticals. Because recombinant agricultural products are released into the environment or consumed as foods, students also need to become familiar with environmental safety issues. Prerequisites: 410.601 Biochemistry 410.602 Molecular Biology, 410.603 Advanced Cell Biology I. S

    Technology Fee: $175.00

    410.622.81 - Molecular Basis of Pharmacology

    $4322

    Lisa Selbie

    Online 5/30 - 8/22

    This course begins by reviewing receptor binding and enzyme kinetics. Various cellular receptors and their physiology are discussed, as well as the pharmacological agents used to define and affect the receptor’s function. Students study the pharmacology of cell surface receptors and intracellular receptors. Also considered are the drugs that affect enzymes. Prerequisites: All four core courses. S

    Technology Fee: $175.00

    410.627.81 - Translational Biotechnology:From Intellectual Property to Licensing

    $4322

    Timothy Alcorn

    Online 5/30 - 8/22

    This course provides an extensive overview of a process for development of a pharmaceutical by a biotechnology company or pharmaceutical company. The course emphasizes the importance of intellectual property, the basic sciences underpinning the development of a product, and the importance of the interaction between a company and the Food and Drug Administration. Students learn to appreciate the importance of quality control and assurance, good manufacturing practices, preclinical and clinical testing, and the lengthy regulatory processes that govern the development, manufacture, and eventual sale of biotechnological products. Hands-on solving of practical problems and guest lecturers who are experts in the field familiarize students with the intricacies of the process. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology I or admission to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs.

    Technology Fee: $175.00

    410.627.82 - Translational Biotechnology:From Intellectual Property to Licensing

    $4322

    Timothy Alcorn

    Online 5/30 - 8/22

    This course provides an extensive overview of a process for development of a pharmaceutical by a biotechnology company or pharmaceutical company. The course emphasizes the importance of intellectual property, the basic sciences underpinning the development of a product, and the importance of the interaction between a company and the Food and Drug Administration. Students learn to appreciate the importance of quality control and assurance, good manufacturing practices, preclinical and clinical testing, and the lengthy regulatory processes that govern the development, manufacture, and eventual sale of biotechnological products. Hands-on solving of practical problems and guest lecturers who are experts in the field familiarize students with the intricacies of the process. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology I or admission to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs.

    Technology Fee: $175.00

    410.630.81 - Gene Therapy

    $4322

    Erin Morrey

    Online 5/30 - 8/22

    Due to recent advances, powerful diagnostics tools can now detect nucleotide changes that are responsible for genetic diseases as well as defects that can influence metabolism of drugs. In this course, using case studies, students will learn general genetic principles, genomic and molecular basis of disease single gene disorders, and the genetic basis for multifactorial diseases including cancer, cardiovascular disease, metabolic disease and neurological disease. The human microbiome and its role in disease will be discussed.  Molecular methods will be emphasized and bioinformatics tools and databases for genomic analysis will be introduced.   Students will discuss the ethical considerations of genetics and genomics.  Pre-requisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Cell Biology I or degree candidate in MS in Individualized Genomics and Health. 

    Technology Fee: $175.00

    410.633.81 - Introduction to Bioinformatics

    $4322

    Catherine Campbell

    Online 5/30 - 8/22

    This course explores the theory and practice of biological database searching and analysis. In particular, students are introduced to integrated systems where a variety of data sources are connected through internet access. Information retrieval and interpretation are discussed, and many practical examples in a computer laboratory setting enable students to improve their data mining skills. Methods included in the course are searching the biomedical literature, sequence homology searching and multiple alignment, phylogeny, gene prediction, protein sequence motif analysis and secondary structure prediction, and several genome browsing methods. Introductory analysis using the R programming language is introduced. Computer access is required. Prerequisites: 410.601 Biochemistry. Corequisite: 410.602 Molecular Biology. S

    Technology Fee: $175.00

    410.633.82 - Introduction to Bioinformatics

    $4322

    Jarrett Morrow

    Online 5/30 - 8/22

    This course explores the theory and practice of biological database searching and analysis. In particular, students are introduced to integrated systems where a variety of data sources are connected through internet access. Information retrieval and interpretation are discussed, and many practical examples in a computer laboratory setting enable students to improve their data mining skills. Methods included in the course are searching the biomedical literature, sequence homology searching and multiple alignment, phylogeny, gene prediction, protein sequence motif analysis and secondary structure prediction, and several genome browsing methods. Introductory analysis using the R programming language is introduced. Computer access is required. Prerequisites: 410.601 Biochemistry. Corequisite: 410.602 Molecular Biology. S

    Technology Fee: $175.00

    410.633.83 - Introduction to Bioinformatics

    $4322

    Md Mizanur Rahman

    Online 5/30 - 8/22

    This course explores the theory and practice of biological database searching and analysis. In particular, students are introduced to integrated systems where a variety of data sources are connected through internet access. Information retrieval and interpretation are discussed, and many practical examples in a computer laboratory setting enable students to improve their data mining skills. Methods included in the course are searching the biomedical literature, sequence homology searching and multiple alignment, phylogeny, gene prediction, protein sequence motif analysis and secondary structure prediction, and several genome browsing methods. Introductory analysis using the R programming language is introduced. Computer access is required. Prerequisites: 410.601 Biochemistry. Corequisite: 410.602 Molecular Biology. S

    Technology Fee: $175.00

    410.634.81 - Practical Computer Concepts for Bioinformatics

    $4322

    Jarrett Morrow

    Online 5/30 - 8/22

    This course introduces students with a background in the life sciences to the basic computing concepts of the UNIX operating system, relational databases, structured programming, object-oriented programming, and the Internet. Included is an introduction to SQL and the Pythonl scripting language. The course emphasizes relevance to molecular biology and bioinformatics. It is intended for students with no computer programming background but with a solid knowledge of molecular biology. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology. S

    Technology Fee: $175.00

    410.634.82 - Practical Computer Concepts for Bioinformatics

    $4322

    Joshua Orvis

    Online 5/30 - 8/22

    This course introduces students with a background in the life sciences to the basic computing concepts of the UNIX operating system, relational databases, structured programming, object-oriented programming, and the Internet. Included is an introduction to SQL and the Pythonl scripting language. The course emphasizes relevance to molecular biology and bioinformatics. It is intended for students with no computer programming background but with a solid knowledge of molecular biology. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology. S

    Technology Fee: $175.00

    410.638.81 - Cancer Biology

    $4322

    Meredith Safford

    Online 5/30 - 8/22

    This course provides students with knowledge of the fundamental principles of the molecular and cellular biology of cancer cells. The course explores the role of growth factors and signal transduction mechanisms, oncogenes, tumor suppressor genes, tumor viruses, and angiogenesis in tumorigenesis and metastasis. Special topics include cancer prevention and the array of cancer therapies, which include surgery, chemotherapy, radiation therapy, hormonal therapy, stem cell transplant, and immunotherapies. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cellular Biology I , 410.604 Advanced Cell Biology II. S

    Technology Fee: $175.00

    410.639.81 - Protein Bioinformatics

    $4322

    Frank Lebeda
    Mark Olson

    Online 5/30 - 8/22

    Because the gap between the number of protein sequences the number of protein crystal structures continues to expand protein structural predictions are increasingly important. This course provides a working knowledge of various computer- based tools available for predicting the structure and function of proteins. Topics include protein database searching, protein physicochemical properties, secondary structure prediction, a statistical verification. Also covered are graphic visualization the different types of three-dimensional folds and predicting 3-D structures by homology. Computer laboratories complement material presented in lectures. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.633 Introduction to Bioinformatics. S

    Technology Fee: $175.00

    410.640.81 - Molecular Phylogenetic Techniques

    $4322

    Elizabeth Humphries

    Online 5/30 - 8/22

    This course will provide a practical, hands-on introduction to the study of phylogenetics and comparative genomics. Theoretical background on molecular evolution will be provided only as needed to inform the comparative analysis of genomic data. The emphasis of the course will be placed squarely on the understanding and use of a variety of computational tools designed to extract meaningful biological information from molecular sequences. Lectures will provide information on the conceptual essence of the algorithms that underlie various sequence analysis tools and the rationale behind their use. Only programs that are freely available, as either downloadable executables or as Web servers, will be used in this course. Students will be encouraged to use the programs and approaches introduced in the course to address questions relevant to their own work. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.633 Introduction to Bioinformatics. S

    Technology Fee: $175.00

    410.645.81 - Biostatistics

    $4322

    William McCarthy

    Online 5/30 - 8/22

    This course introduces statistical concepts and analytical methods as applied to data encountered in biotechnology and biomedical sciences. It emphasizes the basic concepts of experimental design, quantitative analysis of data, and statistical inferences. Topics include probability theory and distributions; population parameters and their sample estimates; descriptive statistics for central tendency and dispersion; hypothesis testing and confidence intervals for means, variances, and proportions; categorical data analysis; linear correlation and regression model; logistic regression; analysis of variance; and nonparametric methods. The course provides students a foundation to evaluate information critically to support research objectives and product claims and a better understanding of statistical design of experimental trials for biological products/devices. Prerequisites: Basic mathematics (algebra). S

    Technology Fee: $175.00

    410.645.82 - Biostatistics

    $4322

    William McCarthy

    Online 5/30 - 8/22

    This course introduces statistical concepts and analytical methods as applied to data encountered in biotechnology and biomedical sciences. It emphasizes the basic concepts of experimental design, quantitative analysis of data, and statistical inferences. Topics include probability theory and distributions; population parameters and their sample estimates; descriptive statistics for central tendency and dispersion; hypothesis testing and confidence intervals for means, variances, and proportions; categorical data analysis; linear correlation and regression model; logistic regression; analysis of variance; and nonparametric methods. The course provides students a foundation to evaluate information critically to support research objectives and product claims and a better understanding of statistical design of experimental trials for biological products/devices. Prerequisites: Basic mathematics (algebra). S

    Technology Fee: $175.00

    410.648.81 - Clinical Trial Design and Conduct

    $4322

    Christopher Breder

    Online 5/30 - 8/22

    Through a case study approach, this course will cover the basic design issues of clinical trials, specifically targeting the protocol, case report forms, analysis plan, and informed consent. The design of a specific trial will be studied to illustrate the major issues in the design of a study, such as endpoint definition, control group selection, and eligibility criteria. The course will also cover the analysis plan for a study, including approaches that are central to clinical trials, such as stratified analysis, adjustment factors, and “intention-to-treat” analysis. The planned analytical techniques will include the analysis of correlated data (i.e., clustered data, longitudinal data), survival analysis using the proportional hazards (Cox) Regression model, and linear models. A semester-long project will include the creation of a protocol, case report forms, and informed consent. Prerequisites: 410.645 Biostatistics or equivalent (required), 410.651 Clinical Development of Drugs and Biologics (recommended). S

    Technology Fee: $175.00

    410.649.81 - Introduction to Regulatory Affairs

    $4322

    Susan Zecchini

    Online 5/30 - 8/22

    Regulatory affairs comprise the rules and regulations govern product development and post-approval marketing. In the U.S. the FDA establishes and oversees the applicable regulations under several statutes, many regulations, and partnership with legislators, patients, and customers. Biotechnology products may be classified as drugs, biologics, or medical devices. Each type is regulated by a different center within the FDA. This course provides an overview of RA and its effect on product development. Topics include RA history, regulatory agencies, how to access regulatory information, drug submissions, biologics submissions, medical device submissions, GLP, GCP, GMP, and FDA inspections.

    Technology Fee: $175.00

    410.649.82 - Introduction to Regulatory Affairs

    $4322

    Alison St John

    Online 5/30 - 8/22

    Regulatory affairs comprise the rules and regulations govern product development and post-approval marketing. In the U.S. the FDA establishes and oversees the applicable regulations under several statutes, many regulations, and partnership with legislators, patients, and customers. Biotechnology products may be classified as drugs, biologics, or medical devices. Each type is regulated by a different center within the FDA. This course provides an overview of RA and its effect on product development. Topics include RA history, regulatory agencies, how to access regulatory information, drug submissions, biologics submissions, medical device submissions, GLP, GCP, GMP, and FDA inspections.

    Technology Fee: $175.00

    410.651.81 - Clinical Development of Drugs and Biologics

    $4322

    Jonathan Helfgott
    Michael Marcarelli

    Online 5/30 - 8/22

    This course introduces students to the planning and work required to develop potential new drugs and biologics efficiently. Students gain a thorough appreciation of FDA and International Council for Harmonisation regulations and guidelines. Because the course emphasizes the importance of planning before the execution of any of the necessary steps, lectures use a “backward” approach, discussing the final analysis and report before developing protocols. Topics also include an overview of preclinical investigations; NDA/BLA format and content; clinical development plans; product and assay development; the IND; and trial design, implementation, and management. Prerequisites: 410.303 Foundations of Bioscience OR 410.601 Biochemistry and 410.603 Advanced Cell Biology OR admission to the MS in Regulatory Science Program OR Master of Biotechnology Enterprise and Entrepreneurship programs. S

    Technology Fee: $175.00

    410.651.82 - Clinical Development of Drugs and Biologics

    $4322

    Bharat Khurana

    Online 5/30 - 8/22

    This course introduces students to the planning and work required to develop potential new drugs and biologics efficiently. Students gain a thorough appreciation of FDA and International Council for Harmonisation regulations and guidelines. Because the course emphasizes the importance of planning before the execution of any of the necessary steps, lectures use a “backward” approach, discussing the final analysis and report before developing protocols. Topics also include an overview of preclinical investigations; NDA/BLA format and content; clinical development plans; product and assay development; the IND; and trial design, implementation, and management. Prerequisites: 410.303 Foundations of Bioscience OR 410.601 Biochemistry and 410.603 Advanced Cell Biology OR admission to the MS in Regulatory Science Program OR Master of Biotechnology Enterprise and Entrepreneurship programs. S

    Technology Fee: $175.00

    410.673.81 - Biological Processes in Regulatory Affairs

    $4322

    Markus Yap

    Online 5/30 - 8/22

    This course provides an overview of the biological processes laboratory techniques utilized for the discovery, development and evaluation of therapeutic drugs. Students investigate drug development processes, such as gene cloning, culture scale-u downstream processing, and product purification. Emphasis is placed on the theory and application of laboratory methods u in drug development, such as recombinant DNA techniques, antibody technology, protein purification, immunoassays, high throughput drug screening, chromatography, electrophoresis cell receptor characterization, pharmacokinetics, drug toxicity testing and evaluation of therapeutic drugs, diagnostics, and vaccines. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology OR admissions to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs. S

    Technology Fee: $175.00

    410.673.82 - Biological Processes in Regulatory Affairs

    $4322

    Michael Manning

    Online 5/30 - 8/22

    This course provides an overview of the biological processes laboratory techniques utilized for the discovery, development and evaluation of therapeutic drugs. Students investigate drug development processes, such as gene cloning, culture scale-u downstream processing, and product purification. Emphasis is placed on the theory and application of laboratory methods u in drug development, such as recombinant DNA techniques, antibody technology, protein purification, immunoassays, high throughput drug screening, chromatography, electrophoresis cell receptor characterization, pharmacokinetics, drug toxicity testing and evaluation of therapeutic drugs, diagnostics, and vaccines. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology OR admissions to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs. S

    Technology Fee: $175.00

    410.674.81 - Food Microbiology

    $4322

    Om Singh

    Online 5/30 - 8/22

    Food microbiology encompasses the study of microorganisms that have both beneficial and deleterious effects on the quality and safety of raw and processed meat, poultry, and egg products. Food microbiology focuses on the general biology of the microorganisms that are found in foods, including their growth characteristics, identification, and pathogenesis. Specifically, areas of interest that concern food microbiology are food poisoning, food spoilage, food preservation, and food legislation. Pathogens in product, or harmful microorganisms, result in major public health problems in the United States and worldwide, and are the leading causes of illnesses and death. S

    Technology Fee: $175.00

    410.675.81 - International Regulatory Affairs

    $4322

    Suzanne Fitzpatrick

    Online 5/30 - 8/22

    Pharmaceutical/biotechnology product approval and marketing requires a good understanding of international regulatory affairs in order to successfully compete in today’s global marketplace. It is important for tomorrow’s leaders to understand and follow the regulatory differences to ensure optimum product development strategies, regulatory approvals, and designs for exports conforming to the foreign regulatory bodies. There are various product development strategies that industry is using to shorten the product development time by conducting preclinical programs outside the U.S., but the strategy requires careful planning and interaction with the U.S. and foreign regulatory agencies. With the increase in globalization of economy and exports, international regulations will have a bigger impact on the biotechnology business in the future. The course provides a review and analysis of the pharmaceutical/biotechnology product approval processes within the world’s major markets. The key strategies required in preclinical product development to marketing approval of the products in Europe, Japan, and the U.S. will be compared and discussed. Students will explore the European Union regulations and their overall importance on international markets. The course will cover the salient features of common technical and regulatory documents required for submission and approval to the leading regulatory bodies in the world, general guidance documents, international harmonization, and the General Agreement on Tariffs and Trade.

    Technology Fee: $175.00

    410.676.81 - Food And Drug Law

    $4322

    Loretta Chi

    Online 5/30 - 8/22

    The Food, Drug, and Cosmetic Act governs the regulatory approval process for bringing a drug, biologic, medical device, food, or cosmetic to market. The class will discuss administrative procedures followed by the FDA. The course includes an overview of the drug, biologic, and medical device approval processes, and the regulation of food and dietary supplements. Students then will be exposed to the enforcement activities of the FDA, including searches, seizure actions, injunctions, criminal prosecutions, and civil penalties authorized under the FD&C Act, as well as other statutes, like the Public Health Service Act which regulates the development and approval of biologics.

    Technology Fee: $175.00

    410.676.82 - Food And Drug Law

    $4322

    Emil Wang

    Online 5/30 - 8/22

    The Food, Drug, and Cosmetic Act governs the regulatory approval process for bringing a drug, biologic, medical device, food, or cosmetic to market. The class will discuss administrative procedures followed by the FDA. The course includes an overview of the drug, biologic, and medical device approval processes, and the regulation of food and dietary supplements. Students then will be exposed to the enforcement activities of the FDA, including searches, seizure actions, injunctions, criminal prosecutions, and civil penalties authorized under the FD&C Act, as well as other statutes, like the Public Health Service Act which regulates the development and approval of biologics.

    Technology Fee: $175.00

    410.679.81 - Practicum in Regulatory Science

    $4322

    Thomas Colonna

    Online 5/30 - 8/22

    This integrative, case-based course will focus on applying knowledge gained from previous courses in the Master of Science in Regulatory Science program to actual cases from the FDA. For each case, students will assume the role of regulatory specialist, an FDA reviewer or senior-level policy-maker, or other involved stakeholders, such as a consumer group or an advocacy group. Students will be expected to research, evaluate, and present scientifically and legally justifiable positions on case studies from the perspective of their assigned roles. Students will present their perspectives to the class and be asked to debate the issues with the other students from the perspective of their assigned roles. The major responsibility of the students in this course will be to make scientifically and legally defensible recommendations and to justify them through oral and written communication. Please note this course is only open to students in the Master of Science in Regulatory Science and should only be taken after all required courses are completed.

    Technology Fee: $175.00

    410.679.82 - Practicum in Regulatory Science

    $4322

    Thomas Colonna

    Online 5/30 - 8/22

    This integrative, case-based course will focus on applying knowledge gained from previous courses in the Master of Science in Regulatory Science program to actual cases from the FDA. For each case, students will assume the role of regulatory specialist, an FDA reviewer or senior-level policy-maker, or other involved stakeholders, such as a consumer group or an advocacy group. Students will be expected to research, evaluate, and present scientifically and legally justifiable positions on case studies from the perspective of their assigned roles. Students will present their perspectives to the class and be asked to debate the issues with the other students from the perspective of their assigned roles. The major responsibility of the students in this course will be to make scientifically and legally defensible recommendations and to justify them through oral and written communication. Please note this course is only open to students in the Master of Science in Regulatory Science and should only be taken after all required courses are completed.

    Technology Fee: $175.00

    410.680.81 - Finance for Biotechnology

    $4322

    Norman Marcus

    Online 5/30 - 8/22

    Students will build an understanding of the basics of contemporary global monetary systems and the essentials of financial management. This course will include a means to develop a working knowledge of the critical financial factors for decision-makers from the perspectives of key stakeholders. The syllabus is designed to provide students with limited or no background in finance an opportunity to establish a means to understand financial basics and communicate clearly in financial terms when conducting business. This course is uniquely designed to meet the current needs of those leading the global life science industry.  S

    Technology Fee: $175.00

    410.680.82 - Finance for Biotechnology

    $4322

    Anthony Schwartz

    Online 5/30 - 8/22

    Students will build an understanding of the basics of contemporary global monetary systems and the essentials of financial management. This course will include a means to develop a working knowledge of the critical financial factors for decision-makers from the perspectives of key stakeholders. The syllabus is designed to provide students with limited or no background in finance an opportunity to establish a means to understand financial basics and communicate clearly in financial terms when conducting business. This course is uniquely designed to meet the current needs of those leading the global life science industry.  S

    Technology Fee: $175.00

    410.683.81 - Introduction to cGMP Compliance

    $4322

    Nancy Karaszkiewicz

    Online 5/30 - 8/22

    Current Good Manufacturing Practice regulations are the minimum standards for the design, production, and distribute of drugs, biologics, and medical devices in the U.S. and internationally. In the U.S., they are codified at the federal level, in the FD&C Act and the Code of Federal Regulations, and actively enforced by FDA. These regulations, however, only begin to describe the practices used in the pharmaceutic and biotech industries. Additional sources of insight and guidance include the FDA’s guidance documents and training manuals, industry trade publications, international compendia and standards-setting organizations. Students will learn the scope and history of the regulations, industry-standard implementation strategies and “best-practices” approaches, and the FDA’s current expectations. Students will also learn to apply practical solutions to the regulatory issues faced in the pharmaceutical and biotech industries today.

    Technology Fee: $175.00

    410.683.82 - Introduction to cGMP Compliance

    $4322

    Nancy Karaszkiewicz

    Online 5/30 - 8/22

    Current Good Manufacturing Practice regulations are the minimum standards for the design, production, and distribute of drugs, biologics, and medical devices in the U.S. and internationally. In the U.S., they are codified at the federal level, in the FD&C Act and the Code of Federal Regulations, and actively enforced by FDA. These regulations, however, only begin to describe the practices used in the pharmaceutic and biotech industries. Additional sources of insight and guidance include the FDA’s guidance documents and training manuals, industry trade publications, international compendia and standards-setting organizations. Students will learn the scope and history of the regulations, industry-standard implementation strategies and “best-practices” approaches, and the FDA’s current expectations. Students will also learn to apply practical solutions to the regulatory issues faced in the pharmaceutical and biotech industries today.

    Technology Fee: $175.00

    410.684.81 - Technology Transfer & Commercialization

    $4322

    Reid Adler

    Online 5/30 - 8/22

    This course is an introduction to the multidisciplinary aspect involved in the process of translating innovations in technology into commercial use, particularly research discoveries emanating from universities and other nonprofit organization.

    Technology Fee: $175.00

    410.684.82 - Technology Transfer & Commercialization

    $4322

    Reid Adler

    Online 5/30 - 8/22

    This course is an introduction to the multidisciplinary aspect involved in the process of translating innovations in technology into commercial use, particularly research discoveries emanating from universities and other nonprofit organization.

    Technology Fee: $175.00

    410.693.81 - Science, Medicine & Policy in Biodefense

    $4322

    Sara Ruiz

    Online 5/30 - 8/22

    This course provides a comprehensive introduction to the Concentration in Biodefense. Biological warfare is introduced in its historical context, followed by the properties of the most important biological threat agents, their medical consequences and treatment, diagnostics, and forensics. Relevant international and domestic policy issues are explored, along with defense strategies and the nature of existing dangers to national security. Students should leave the class with a deep understanding of biological warfare and terror agents, the consequences of their potential use, and the available means of protection. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I, undergraduate microbiology or 410.615 Microbiology. S

    Technology Fee: $175.00

    410.694.81 - FDA Premarket Applications

    $4322

    Emil Wang

    Online 5/30 - 8/22

    This course provides a comprehensive overview of the U.S. Food and Drug Administration’s (FDA’s) regulation of the research and development, and marketing of new drugs, biologics, and medical devices. The regulatory requirements for investigational (Investigational New Drug (IND) and Investigational Device Exemption (IDE)) and premarket approval (New Drug Application (NDA), Abbreviated New Drug Application (ANDA), Biologics License Application (BLA), premarket notification (510(k)), Premarket Approval (PMA)) applications will be addressed. The content and format requirements for the preparation, submission, and maintenance of these applications will be covered.

    Technology Fee: $175.00

    410.698.81 - Bioperl

    $4322

    Andrei Mamoutkine

    Online 5/30 - 8/22

    Perl has emerged as the language of choice for the manipulation of bioinformatics data. Bioperl, a set of object-oriented modules that implements common bioinformatics tasks, has been developed to aid biologists in sequence analysis. The course will include an overview of the principal features of Bioperl and give students extensive opportunity to use Perl and the tools of Bioperl to solve problems in molecular biology sequence analysis. Prerequisites: 410.601 Biochemistry, 410.60 Molecular Biology, 410.634 Practical Computer Concepts for Bioinformatics. S

    Technology Fee: $175.00

    410.702.81 - Biomedical Software Regulation

    $4322

    Jonathan Helfgott
    Thomas Colonna

    Online 5/30 - 8/22

    Software continually grows more complex and is becoming relied upon by health care professionals in the treatment of patients. This course describes how the U.S. government regulates software used in delivering health care, including the regulations utilized by the FDA, and the Centers for Medicare and Medicaid Services. This course covers a wide range of topics, including: FDA regulation of software as a medical device and software validation, medical imaging software regulation, electronic record keeping and software used in clinical trials, laboratory information management systems, and HIPAA privacy rules and security standards.

    Technology Fee: $175.00

    410.704.81 - Social Entrepreneurship in BioScience

    $4322

    Katherine Wellman

    Online 5/30 - 8/22

    This course will explore how biotechnology innovators are solving social issues, including developing medical diagnostics, discovering effective and safer medicine, producing cleaner energy, remediating environmental contamination, and improving crop yields. Students will think broadly in terms of roles required in tackling these social, economic, health, and environmental issues, and how they can add value to society.

    This course will cover social entrepreneurship principles and practices in a range of sectors, including corporate social responsibility and public value missions in emerging markets. Students will have opportunities to define their role in advancing biotechnology as it relates to the top global challenges.

    Technology Fee: $175.00

    410.708.81 - Medical Product Reimbursement

    $4322

    Rochelle Fink

    Online 5/30 - 8/22

    Medical products brought to market need to have a sound payment, coding, and coverage strategy.  Medicare covers over 100 million Americans and it leads the way in all United States insurance policies.  This course will provide insight into how medical product reimbursement works and allow students to understand how the Centers for Medicare & Medicaid Services (CMS) considers medical products for coverage, coding, and payment.  We’ll review the history of Medicare coverage and the regulations.  We’ll focus primarily on strategies used to get reimbursement for medical products—both at the national and local levels.

    Technology Fee: $175.00

    410.712.81 - Advanced Practical Computer Concepts for Bioinformatics

    $4322

    Joshua Orvis

    Online 5/30 - 8/22

    This intermediate-to-advanced-level course, intended as a follow-on to 410.634 Practical Computer Concepts for Bioinformatics (a prerequisite for this new class), will integrate and expand on the concepts from that introductory class to allow students to create working, Web-based bioinformatics applications in a project-based course format. After a review of the concepts covered in 410.634, students will learn how to create functional Web applications on a UNIX system, using Python and CGI to create forms that can be acted upon, and using the Perl DBI module to interface with MySQL relational databases that they will create and populate to retrieve and present information. This will be demonstrated by building an in-class, instructor-led project. More advanced SQL concepts and database modeling will also be covered, as well as introductions to HTML5, CSS3, and Javascript/JQuery. Class time in the latter weeks of the class will be devoted to individual assistance on student projects and to short lectures on advanced topics. Once again, whenever possible, this course will emphasize relevance to solving problems in molecular biology and bioinformatics. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.634 Practical Computer Concepts. S

    Technology Fee: $175.00

    410.712.82 - Advanced Practical Computer Concepts for Bioinformatics

    $4322

    Joshua Orvis

    Online 5/30 - 8/22

    This intermediate-to-advanced-level course, intended as a follow-on to 410.634 Practical Computer Concepts for Bioinformatics (a prerequisite for this new class), will integrate and expand on the concepts from that introductory class to allow students to create working, Web-based bioinformatics applications in a project-based course format. After a review of the concepts covered in 410.634, students will learn how to create functional Web applications on a UNIX system, using Python and CGI to create forms that can be acted upon, and using the Perl DBI module to interface with MySQL relational databases that they will create and populate to retrieve and present information. This will be demonstrated by building an in-class, instructor-led project. More advanced SQL concepts and database modeling will also be covered, as well as introductions to HTML5, CSS3, and Javascript/JQuery. Class time in the latter weeks of the class will be devoted to individual assistance on student projects and to short lectures on advanced topics. Once again, whenever possible, this course will emphasize relevance to solving problems in molecular biology and bioinformatics. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.634 Practical Computer Concepts. S

    Technology Fee: $175.00

    410.715.81 - Medical Device Regulation

    $4322

    David Locke

    Online 5/30 - 8/22

    This course provides a comprehensive introduction to medical devices and how they are regulated by the FDA. Topics that w be covered include an overview of the laws and regulations that govern medical devices, the FDA’s organizational structure and responsibilities for medical device regulation, and administrative and legal requirements for medical devices throughout the full product life cycle. Particular focus will be placed on the premarket review, post-market programs enforcement (e.g., Quality Systems Regulation, and FDA inspectional programs). Included will be discussions on the responsible offices and major program requirements and resources. Students will be given various case studies to examine the application of regulations, and participate in a 510(k)/PMA workshop, mock inspectional audit, and a mock enforcement action. Upon completion of this course, the student will have a working knowledge of the requirements a policies of FDA regulation of medical devices.

    Technology Fee: $175.00

    410.716.81 - Food Toxicology

    $4322

    Suzanne Fitzpatrick

    Online 5/30 - 8/22

    Food toxicology is the study of the nature, properties, effects, and detection of toxic substances in food, and their disease manifestation in humans. This course will provide a general understanding of toxicology related to food and the human food chain. Fundamental concepts will be covered, including dose- response relationships, absorption of toxicants, distribution and storage of toxicants, biotransformation and elimination of toxicants, target organ toxicity, teratogenesis, mutagenesis carcinogenesis, food allergy, and risk assessment. The course will examine chemicals of food interest, such as food additive mycotoxins, and pesticides, and how they are tested and regulated. S

    Technology Fee: $175.00

    410.717.81 - Risk Assessment and Management

    $4322

    Calvin Chue

    Online 5/30 - 8/22

    Risk analysis is composed of three separate but integrated elements, namely risk assessment, risk management and risk communication. Risk communication is an interactive process of exchange of information and opinion on risk among risk assessors, risk managers, and other interested parties. Risk management is the process of weighing policy alternatives in the light of the results of risk assessment and, if required, selecting and implementing appropriate control options, including regulatory measures. Students will learn how to integrate risk assessment, risk management, and risk communication using case studies.

    Technology Fee: $175.00

    410.718.81 - Food Safety Audits and Surveillance

    $4322

    Kantha Shelke

    Online 5/30 - 8/22

    Food safety audits provide a credible verification system to the entire food processing industry including retail environment meat, fish, and poultry, vegetable and produce suppliers. Having a HACCP plan in place is often a first step to a successful food safety program, but is not entirely enough to ensure that food safety standards are being adhered to on a consistent basis. In this course, students will learn how to adequately plan for a food crisis situation.

    Technology Fee: $175.00

    410.727.81 - Regulatory Strategies in Biopharmaceuticals

    $4322

    Bharat Khurana

    Online 5/30 - 8/22

    Given the costly drug development process and the limited resources of emerging biopharmaceutical companies, developing an eGiven the costly drug development process and the limited resources of emerging biopharmaceutical companies, developing an early regulatory strategy-starting well before clinical trials are initiated is extremely important for the success of a company. This course will discuss different regulatory strategies that several players of the U.S. biopharmaceutical industry have employed. Students will learn about interacting with regulatory agencies, the orphan drug development, accelerated approval, fast track, priority review, and other regulatory mechanisms, pharmacogenomics and biomarkers, adaptive clinical trials, animal rule, generic drug development and biosimilar. Using case studies, the impact of these regulatory strategies on drug development, and how these strategies have helped many biopharmaceutical companies will be discussed. At the end of this course, students will better understand federal regulations and the aspects involved in developing efficient regulatory strategies.arly regulatory strategy- starting well before clinical trials are initiated, is extremely important for the success of a company. This course will discuss different regulatory strategies that several players of the U.S. biopharmaceutical industry have employed. Students will learn about interacting with regulatory agencies, the orphan drug development, accelerated approval, fast track, priority review, and other regulatory mechanisms, pharmacogenomics and biomarkers, adaptive clinical trials, animal rule, generic drug development and biosimilars. Using case studies, the impact of these regulatory strategies on drug development and how these strategies have helped many biopharmaceutical companies will be discussed. At the end of this course, students will better understand federal regulations and the aspects involved in developing efficient regulatory strategies.

    Technology Fee: $175.00

    410.732.81 - Funding a New Venture

    $4322

    Norman Marcus

    Online 5/30 - 8/22

    This course is designed to help students working for life sciences companies understand the fundamentals of obtaining government funding for product/technology research and development. While the emphasis will be on grant funding from the National Institutes of Health, other federal and state funding mechanisms will also be covered. Students will learn how to search for funding opportunities and receive an overview of the NIH funding mechanisms, as well as the background and history of the Small Business Innovation Research (SBIR) program. The course will provide insights on preparing an SBIR proposal and submission procedure. Fundamentals of government contracting law will also be covered.

    Technology Fee: $175.00

    410.736.81 - Genomic and Personalized Medicine

    $4322

    Beatrice Kondo
    Farzaneh Sabahi

    Online 5/30 - 8/22

    With the advent of rapid, low-cost whole genome sequencing, the field of personalized medicine is growing from a niche field, to becoming the new standard of practice in medicine. Already, oncology makes use of genomic sequencing to inform treatment decisions based on tumor types, and patients are seeking knowledge about their genetic and environmental risk factors to make informed health decisions. This class explores the evolving field of personalized medicine, examining genomics, as well as proteomics, metabolomics, epigenetics, and the microbiome. Students will read and discuss new developments in pharmacogenomics, rare and complex diseases, genomics for the healthy person, and the ethical, economic, and social implications of these new technologies. These topics will be approached with a view toward application in clinical practice. Prerequisites: 410.602 Molecular Biology; 410.633 Introduction to Bioinformatics. S

    Technology Fee: $175.00

    410.736.82 - Genomic and Personalized Medicine

    $4322

    Beatrice Kondo
    Farzaneh Sabahi

    Online 5/30 - 8/22

    With the advent of rapid, low-cost whole genome sequencing, the field of personalized medicine is growing from a niche field, to becoming the new standard of practice in medicine. Already, oncology makes use of genomic sequencing to inform treatment decisions based on tumor types, and patients are seeking knowledge about their genetic and environmental risk factors to make informed health decisions. This class explores the evolving field of personalized medicine, examining genomics, as well as proteomics, metabolomics, epigenetics, and the microbiome. Students will read and discuss new developments in pharmacogenomics, rare and complex diseases, genomics for the healthy person, and the ethical, economic, and social implications of these new technologies. These topics will be approached with a view toward application in clinical practice. Prerequisites: 410.602 Molecular Biology; 410.633 Introduction to Bioinformatics. S

    Technology Fee: $175.00

    410.753.81 - Stem Cell Biology

    $4322

    Melinda Maris

    Online 5/30 - 8/22

    This course will involve discussion and debate on current topics concerning stem cell biology and the use of stem cells in biotechnology and therapeutics. Topics will include review and discussion of developmental and cell biology, stem cell characteristics, stem cell preparation and therapeutic uses, tissue engineering, global regulatory and ethical issues, and commercialization of stem cell therapy. Current peer-reviewed literature and guest experts in the field will provide up-to-date information for discussion. Prerequisites: 410.601 Biochemistry, 410.602 Molecule Biology, 410.603 Advanced Cell Biology I, 410.604 Advanced Cell Biology II. S

    Technology Fee: $175.00

    410.802.81 - Independent Studies in Regulatory Science

    $4322

    Thomas Colonna

    Online 5/30 - 8/22

    This course is open only to students in the MS in Regulatory Science program or the MS in Biotechnology with a concentration in Regulatory Affairs and may be taken only after the student has completed 5 courses and has compiled a strong academic record. Prior to proposing a project, interested students must have identified a study topic and a mentor who is familiar with their prospective inquiry and who is willing to provide guidance and oversee the project. The study project must be independent of current work-related responsibilities as determined by the project mentor. The mentor may be a faculty member, a supervisor from the student's place of work, or any expert with appropriate credentials. The goal of the study project should be a "publishable" article. Students are required to submit a formal proposal for review and approval by the regulatory science program committee. The proposal must be received by the Advanced Academic Programs office no later than one month prior to the beginning of the term in which the student wants to enroll in the course. Students must interact with a member of the program committee periodically for discussion of the project's progress, and a written document must be completed and approved by the program committee and project mentor for the student to receive graduate credit. Additional guidelines can be obtained from the AAP administrative office.

    Technology Fee: $175.00

    410.803.81 - Regulatory Science Thesis

    $4322

    Thomas Colonna

    Online 5/30 - 8/22

    Students wishing to complete a thesis may do so by embarking on a two-semester thesis project, which includes 410.802 Independent Studies in Regulatory Science Project and 410.8 Biotechnology Thesis courses. This project must be either a hypothesis-based or research question-based original research study. The student must complete 410.802 Independent Research Project and fulfill the requirements of that course, including submission of project proposal, final paper, and poster presentation, before enrolling in the subsequent thesis course. For the thesis course, students are required to submit a revised proposal (an update of the 410.802 proposal) for review and approval by the faculty adviser and biotechnology program committee one month prior to the beginning of the term. Students must meet the faculty adviser periodically for discussion of the project’s progress. Graduation with a thesis is subject to approval by the thesis committee and program committee, and requires the student to present his/her project to a faculty committee both orally and in writing. Prerequisites: All required regulatory science courses and three elective courses, which must include 410.802 Independent Studies in Regulatory Science and, if hypothesis driven, 410.645 Biostatistics.

    Technology Fee: $175.00