Course Descriptions

State-specific Information for Online Programs

Note: Students should be aware of state-specific information for online programs. For more information, please contact an admissions representative.

  • Core Courses

    430.600 - Web GIS

    Web GIS is an important foundation course in which students will become familiar with the current platforms available for delivering Web GIS and sharing geographic content over the web. Professionals in various industries often have to make information readily available and with current developments this has become easier than ever. The class offers a fundamental understanding of creating and designing web maps and web apps using various approaches and platforms. Capabilities such as editing, geoprocessing, geocoding, image analysis, 3D, mobile and real-time GIS in a web environment will be examined. Cloud-based and on premises infrastructure to deliver Web GIS will be utilized. Offered twice a year.

    430.601 - Geographic Information Systems (GIS)

    In this introductory course, students become familiar with the concepts and gain the experience necessary to appreciate the utility of Geographic Information Systems in decision-making. Topics covered include the fundamentals of data structures, georeferencing, data classification, querying, cartography, and basic spatial data analysis. The course provides an overview of the capabilities of GIS software and applications of GIS. Class time is divided between lectures and GIS exercises that reinforce critical concepts. Students must complete a term project as part of the course. Offered every semester. Elective option for Govt. Analytics students.

    430.603 - Geospatial Statistics

    This course introduces theory and practical application of statistical methods in spatial analysis. Statistical fundamentals will be introduced to expose students to descriptive and inferential methods in spatial statistics. Geostatistical fundamentals will also be covered to introduce methods (in particular, kriging) for modelling spatial and spatio-temporal phenomena. This course will provide working knowledge of theory and practice in spatial statistics and Geostatistics, and will serve as a primer to more advanced courses in spatial statistics and machine learning. Theoretical knowledge will be supplemented with real-world use cases through in-class projects and assignments. Throughout the course, students will be exposed to open-source statistics libraries in R, no previous programming knowledge will be assumed. Offered twice a year.

    430.604 - Spatial Analytics

    This course introduces students to using various techniques for solving spatial problems. The course teaches a proven process one can utilize to address common inquiries related to understanding spatial relationships and patterns. Traditional analytical methods such as suitability analysis, network analysis, geostatistical analysis, spatial interpolation, etc. are examined, along with recent data science and analytics methodologies that help us extract knowledge and insights from data. Students will also use spatial statistics to address the distributional and locational aspects of spatial data within a variety of situations. Examples and assignments are drawn from many GIS applications, such as business, urban planning, public safety, public health, transportation and natural sciences. Offered twice a year. Elective option for Govt. Analytics students.

    430.606 - Programming in GIS

    In this course students will learn how to automate workflows and develop tools using Python scripts as well as develop web mapping applications using Application Programming Interfaces (APIs). The course is split in two sections. The first section covers Python as a scripting language which provides an easy way for automating complex GIS tasks and functionality, thus simplifying workflows and increasing efficiency. Management of Web GIS functions thought Python APIs will be emphasized. The second section teaching basic principles of developing web mapping applications utilizing JavaScript APIs. The students will learn how to develop rich, interactive web mapping applications which contain common GIS functionality such as selection, querying, geocoding, routing, editing and geoprocessing. This course will also introduce students to GitHub, Jupyter Notebooks, and Markdown. Offered twice a year. Prerequisites: 430.600 Web GIS

  • Capstone

    430.800 - Capstone for Geographic Information Systems

    The capstone is the culmination of the instruction and training a student receives in the MS in GIS program. In this course, the student selects a mentor, identifies a topic of interest, acquires the relevant data required for the study, develops a data model and/or analysis method, devises the visualization of the data as part of the data interpretation, and summarizes the study in a final report. Students are encouraged to make their presentations at a GIS conference or publish the results of their study in a peer-reviewed GIS publication. Students are responsible for selecting a mentor who may be a JHU faculty member, a qualified and appropriate person from the student’s place of work, or any expert with appropriate credentials. Offered every semester. Prerequisite: core course requirements for MS in GIS, at least eight courses taken in the program.

  • Elective Courses

    430.602 - Remote Sensing: Systems and Applications

    This course introduces remote sensing as an important technology to further our understanding of Earth’s land, atmospheric, and oceanic processes. Students study remote sensing science, techniques, and satellite technologies to become familiar with the types of information that can be obtained and how this information can be applied in the natural and social sciences. Applications include assessment of land cover and land use, mapping and analysis of natural resources, weather and climate studies, pollution detection and monitoring, disaster monitoring, and identification of oceanographic features.Offered once a year in Spring.

    430.605 - Development and Management of GIS Projects

    This course introduces students to project, program, and portfolio management standards, which will guide them on how to successfully manage GIS projects. Students will learn how to apply core project management principles and guidelines to real project scenarios. The course will impart knowledge and skills for managing GIS projects throughout their entire lifecycle, while addressing technical, ethical, and institutional problems. Students will explore key issues in organizational management, including earned-value management, resource planning, and communications. During the course, students will learn how to determine the return on investment of a GIS project, create a comprehensive schedule and budget, and determine risk management, quality control, and contract management skills in support of your GIS project. Offered once a year.

    430.607 - Spatial Databases and Data Interoperability

    A well-designed database is necessary to construct relevant spatial data queries. In this course, students learn the different database designs for stand-alone databases and enterprise database systems. This course examines the requirements for a GIS Decision Support System by focusing on the design of the data schema, identifying the necessary data elements and their formats, and exploring data interoperability as a designed constituent of a database. Data management routines for maintaining the spatial integrity will also be introduced. Offered once a year. Prerequisites: 430.600 Web GIS.

    430.608 - GIS and Spatial Decision Support Systems

    GIS can be a very effective tool to assist in making decisions for a wide range of applications at the local, regional, and global scale. This course will examine the use of GIS as a spatial decision support system for systematic policy analysis and scenario modeling. Case studies will be used from the areas of agriculture, conservation planning, homeland security, land use planning, natural disasters, transportation, urban planning, and water resources. Offered once. a year. Prerequisites: 430.601 Geographic Information Systems, 430.604 Spatial Analysis with GIS.

    430.609 - Spatial Data Management: Quality and Control

    Spatial data quality is a major concern for any GIS. This course examines the nature of errors in spatial data and various aspects of spatial data quality, including positional and thematic accuracy, resolution, precision, completeness and logical consistency. The impacts of errors on the reliability of GIS-based analysis are explored. Various strategies to improve the quality of spatial data are addressed, including the use of standards for spatial data (FGDC, OGC and ISO) and data management tools. Offered once a year. Prerequisite: 430.601 Geographic Information Systems, 430.603 Geospatial Data Modeling

    430.610 - GIS for Infrastructure Management

    This course will familiarize students with applications of Geographic Information Systems (GIS) for infrastructure management. Building, utilizing and sharing reliable asset information and integrating enterprise data will be emphasized, in order to help stakeholders make informed decisions and capitalize on efficiencies of using GIS to support various kinds of facilities and infrastructure. Students will have the opportunity to use GIS applications to do project work in support of facility operations, strategic planning, real estate management, architecture design and construction, sustainability, utilities, buildings and interior space management, drones mapping, among others. Samples will be drawn from large university enterprise with multiple campus locations yet applicable to cities and various other settings. Research and spatial analysis will be conducted using recently acquired GIS orthoimagery, LIDAR and planimetric data for the Johns Hopkins’ own Homewood campus. Prerequisite: 430.601 Geographic Information Systems.

    430.611 - Geospatial Ontologies and Semantics

    The Geospatial Semantics and Ontologies course examines the foundations, design, and use of linked data (LD) modeling technologies and approaches for geospatial data. LD is based on the node-edge-node triple data model to form graphs that can represent information networks and so, addresses challenges associated with information management problems such as the use of variable terms used in GIS applications and their associations within related enterprises and information exchange over the Internet. The introduction to the course presents a general approach to semantics and ontology, and basics of information interchange on the Internet, such as Extensible Markup Language (XML) and its extension Geography Markup Language (GML). Standards for formal information semantics are covered, including serialization for Resource Description Framework (RDF) data, Well Known Text (WKT) for specifying coordinate geometries, SPARQL and GeoSPARQL query language, and Web Ontology Language (OWL) for logical reasoning and data inference. The triple model is compared to natural language, tree, and relational table data models. Exercises are intended to explore LD resources and services over the Internet. Subsequent lessons examine LD architectures and publication, ontology pattern design for the reuse of concepts, and visualization and mapping. The relation of LD to CyberGIS is presented in the final week. Some required technical literacies, such as Java Script Object Notation (JSON), data indexing, and Scalable Vector Graphics (SVG) will be reviewed. These introductory skills provide the foundation of advanced geospatial LD applications. Offered once a year. Prerequisite: 430.600 Web GIS.

    430.612 - Cartographic Design and Visualization

    The Cartographic Design and Visualization course focuses on the fundamentals of cartography, spatial statistics, thematic mapping techniques, 3D mapping, and web based mapping. Students will gain an inter-disciplinary understanding of cartographic representation and visualization with hands on applications using cutting edge GIS and graphic design software to create purpose tailored maps. Upon successful completion of this course, students will be able to interpret and appropriately communicate spatial data; will have developed a personalized cartographic style; will have created a professional GIS portfolio for current/potential employers; and most importantly will have developed a keen appreciation for maps and spatial awareness! Offered once a year. Prerequisite: 430.601 Geographic Information Systems.

    430.613 - Advanced Topics in Remote Sensing

    This course explores the various remote sensing platforms, collection systems, processing methods, and classification approaches to remotely sensed data. Course content includes the Electromagnetic Spectrum, Lidar, Interferometric SAR, Sonar, Unmanned Autonomous Vehicles (drone technology), 2D vs. 3D modeling, volumetric analysis, ecological research with remote sensing and applications of technology and datasets in GIS models. Offered once a year. Prerequisite: 430.602 Remote Sensing: Systems and Applications.

    430.615 - Big Data Analytics: Tools and Techniques

    The explosion of data collection methods from a vast array of data sources in volumes previously unimaginable has tested the limits of traditional technology, which are not able to scale to the requirements of massive data. Big Data is the field of data studies where the data is identified by very large volumes, high velocity in data generation, and data format variety. This course explores Big Data technologies while utilizing cloud infrastructures. We will discuss the characteristics and architectural challenges surrounding Big Data, and explore geo-visualization techniques of data processed using Big Data Analytics. Students will work in a cloud computing environment to build Hadoop clusters, NoSQL databases, and work with other open source technologies to process data stores like Census data, and twitter feeds. Offered twice a year. Prerequisites: 430.600 Web GIS, 430.606 Programming in GIS. Python programming experience is highly recommended.

    430.617 - Demographics Modeling

    Census data is the most often used data in geospatial studies. Census data provide information on the demographic composition of households all the way through state and national population trends. Census data also serve the data layers that form the basis of most mapping applications. In this course, students will learn how to work with Census data in GIS by understanding the vast amounts of data collected in support of the decadal Census, how to discover and read the various tables that associate with the raw Census data, and how to create custom data layers for demographic models in economics, housing, and population studies. Offered once a year. Prerequisite: 430.601 Geographic Information Systems, or permission of the instructor.

    430.618 - Advanced Python Scripting for GIS

    This course focuses on advanced uses of Python as a scripting tool to automate workflows in GIS and create customized applications. This includes the development of script tools, utilizing advanced ArcPy modules, working with third-party modules, implementing Python geoprocessing services, customizing GIS applications, and more advanced Python functionality. Offered once a year. Prerequisites: 430.606 Programming in GIS.

    430.619 - Advanced Web Application Development

    This course is designed to provide students with advanced experience in web application development. It focuses on uses of Web APIs, including the new ArcGIS API 4.2, for developing rich and interactive web mapping applications. HTML, CSS and several popular JavaScript frameworks, such as Dojo, JQuery and AngularJS, will be covered. Interchange languages (JSON, XML) and responsive design will also be explored. Widgets will be examined to quickly develop solutions, but the emphasis will be placed on tasks which provide more control over server-side functionality. Conceptual and technical documentation and samples will be greatly utilized. The course will facilitate heavy engagement in the large and growing community of Web API developers. Offered once a year. Prerequisite: 430.606 Programming in GIS

    430.621 - GIS for Emergency Management

    Geographic Information Systems (GIS) have become an integral part of understanding the natural hazards in our world and how emergency management agencies respond to events and mitigate the impact of disasters. Furthermore, the advent of Web GIS has helped agencies overcome many challenges previously associated with GIS in Emergency Management. This course is an opportunity to learn about the use of GIS in studying natural hazards and apply cutting edge GIS technology to help emergency management agencies in the field. In today’s device-driven world, maps need to work on mobile devices so there will be an emphasis on enabling GIS in the field. You will use Web GIS to deploy maps that assist agencies with their incident command functions: Planning, Operations, Logistics, Command, and Public Information. While the industry focus will be on Emergency Management, the knowledge, skills and abilities you develop will be widely applicable in both public and private sector industries. Offered once a year. Prerequisite: 430.601 Geographic Information Systems or permission of the instructor.

    430.623 - Geo Apps

    The Geo Apps course is designed to reflect current developments in the GIS industry. The course will teach you to extend your reach beyond common desktop GIS workflows, allowing you to present information and tools to a broader audience. You will learn how to create information models for field and crowdsource data collection apps, best practices for publishing geospatial information and configuring a range of web and native applications, and how to create meaningful information products that match specific user needs. You will work with different types of 2D and 3D data in desktop, web, and mobile geo apps to simulate how GIS is being used in modern organizations. Offered once a year. Prerequisite: 430.601 Geographic Information Systems, or permission of the instructor.

    430.625 - System Architecture for Enterprise GIS

    This is a project-based course, which allows students to build an Enterprise GIS implementation. Various enterprise architecture components, such as portals, servers, data stores, web adaptors, load balancers, enterprise databases and big data stores, real time servers, geoanalytics servers, etc. will be examined and implemented in a deployment scenario. Students will first design the enterprise architecture, then implement it. Students will have multiple Amazon EC2 instances configuration available to them at least for part of the semester, in order to practice setting up this enterprise implementation. Topics such as high availability and disaster recovery, enterprise authentication, and administration through scripting, will be applied. Offered once a year. Prerequisites: 430.600 Web GIS.

    430.627 - Artificial Intelligence and Machine Learning in Geospatial Technology

    The transformational impact of artificial intelligence and machine learning in geospatial data science is profound. This course presents a hands-on approach of applying automated modeling and predictive analytics to solve problems. Smart capabilities are powered by machine learning and GeoAI through the use of correlations of pattern detection to build predictive models and classify outcomes for data never seen before. Use cases from various sectors focusing on prediction and optimization, finding patterns and correlations, advanced object detection and automatic feature extraction, are examined. Offered once a year. Prerequisites: 430.606 Programming in GIS. Python programming experience is required.