Course Schedule

The courses below are those offered for the term. (To view the course description, class dates & times, touch on accordion tab by the title.)

State-specific Information for Online Programs

Note: Students should be aware of state-specific information for online programs. For more information, please contact an admissions representative.

  • Homewood Campus

    410.601.01 - Biochemistry

    $4196

    Richa Tyagi

    Monday 6:00 - 9:20; 1/8 - 4/30

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology.

    410.602.01 - Molecular Biology

    $4196

    Robert Horner

    Tuesday 6:00 - 9:20; 1/9 - 4/24

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA Prerequisite: 410.601 Biochemistry.

    410.603.01 - Advanced Cell Biology I

    $4196

    Michael Lebowitz

    Thursday 6:00 - 9:20; 1/11 - 4/26

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation.

    410.604.01 - Advanced Cell Biology II

    $4196

    Dr. Jonathon Bennett

    Thursday 6:00 - 9:20; 1/11 - 4/26

    This course is a continuation of 410.603 (Advanced Cell Biology I) and further explores cell organization and subcellular structure. Students examine cell-to-cell signaling that involves hormones and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathways to oncogenesis and other disease states will be stressed. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I.

    This is a hybrid course.

    410.613.01 - Principles of Immunology

    $4196

    Richa Tyagi

    Saturday 9:00 - 12:20; 1/13 - 4/28

    This course covers molecular and cellular immunology, including antigen and antibody structure and function, effector mechanisms, complement, major histocompatibility complexes, B and T cell receptors, antibody formation and immunity, cytotoxic responses, and regulation of the immune response. Students are also introduced to the applied aspects of immunology, which include immunoassay design and flow cytometry. Special topics include immunomodulation, immunosuppression, immunotherapy, autoimmunity, and vaccination. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology, 410.603 Advanced Cell Biology I.

    This is a hybrid class and will meet every other Saturday onsite and the remainder of the classes will be online

    410.615.01 - Microbiology

    $4196

    Sara Ruiz

    Wednesday 6:00 - 9:20; 1/10 - 4/25

    This course is an overview of microorganisms important in clinical diseases and biotechnology. Students are introduced to the general concepts concerning the morphology, genetics, and reproduction of these microbial agents. Lectures focus on individual organisms, with emphasis on infectious diseases, biotechnology applications, molecular and biochemical characteristics, and molecular and serological identification methods. Students will also discuss the impact biotechnology and particularly genomics, will have on the development of antibiotics and vaccines as treatment and preventive measure Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology410.603 Advanced Cell Biology I.

    410.622.01 - Molecular Basis of Pharmacology

    $4196

    Takashi Tsukamoto

    Monday 6:00 - 9:20; 1/8 - 4/30

    This course begins by reviewing receptor binding and enzyme kinetics. Various cellular receptors and their physiology are discussed, as well as the pharmacological agents used to define and affect the receptor’s function. Students study the pharmacology of cell surface receptors and intracellular receptors. Also considered are the drugs that affect enzymes. Prerequisites: All four core courses.

    410.627.01 - Translational Biotechnology:From Intellectual Property to Licensing

    $4196

    Bonnie Robeson

    Monday 6:00 - 9:20; 1/8 - 4/30

    This course provides an extensive overview of a process for development of a pharmaceutical by a biotechnology company or pharmaceutical company. The course emphasizes the importance of intellectual property, the basic sciences underpinning the development of a product, and the importance of the interaction between a company and the Food and Drug Administration. Students learn to appreciate the importance of quality control and assurance, good manufacturing practices, preclinical and clinical testing, and the lengthy regulatory processes that govern the development, manufacture, and eventual sale of biotechnological products. Hands-on solving of practical problems and guest lecturers who are experts in the field familiarize students with the intricacies of the process. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology or admission to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs.

    410.656.01 - Recombinant DNA Laboratory

    $4196

    Mark Verdecia

    Tuesday 6:00 - 9:30; 1/9 - 4/24

    This laboratory course introduces students to methods for manipulating and analyzing nucleic acids. Students gain extensive hands-on experience with plasmid purification, restriction mapping, ligations, bacterial transformations, gel electrophoresis, as well as applications of the polymerase chain reaction. This course is not recommended for students with substantial experience in these methodologies. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology.

    410.693.01 - Science, Medicine & Policy in Biodefense

    $4196

    John Carra

    Saturday 1:00 - 5:00; 1/13 - 4/28

    This course provides a comprehensive introduction to the Concentration in Biodefense. Biological warfare is introduced in its historical context, followed by the properties of the most important biological threat agents, their medical consequences and treatment, diagnostics and forensics. Relevant international and domestic policy issues are explored, along with defense strategies and the nature of existing dangers to national security. Students should leave the class with a deep understanding of biological warfare and terror agents, the consequences of their potential use, and the available means of protection. Prerequisites : 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I; undergraduate Microbiology or 410.615 Microbiology.

  • Montgomery County Campus

    410.601.71 - Biochemistry

    $4196

    Elena Schwartz

    Tuesday 6:00 - 9:20; 1/9 - 4/24

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology.

    410.602.71 - Molecular Biology

    $4196

    -STAFF-

    Thursday 6:00 - 9:20; 1/11 - 4/26

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA Prerequisite: 410.601 Biochemistry.

    410.603.71 - Advanced Cell Biology I

    $4196

    Michael Lebowitz

    Wednesday 6:00 - 9:20; 1/10 - 4/25

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation.

    410.604.71 - Advanced Cell Biology II

    $4196

    Elena Schwartz

    Monday 6:00 - 9:20; 1/8 - 4/30

    This course is a continuation of 410.603 (Advanced Cell Biology I) and further explores cell organization and subcellular structure. Students examine cell-to-cell signaling that involves hormones and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathways to oncogenesis and other disease states will be stressed. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I.

    410.610.71 - Epigenetics, Gene Organization & Expression

    $4196

    Roza Selimyan

    Wednesday 5:15 - 8:35; 1/10 - 4/25

    Students use genetic analysis and molecular biology techniques to investigate chromosome organization, chromatin structure, functional genomics, and mechanisms of differential gene expression. Other topics include DNA methylation, silencers, enhancers, genomic imprinting, and microarray analysis. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology.

    410.611.71 - Vaccinology

    $4196

    Robert Kaminski

    Tuesday 6:00 - 9:20; 1/9 - 4/24

    This course will cover the biological development, immunologic concepts, and methods for vaccine delivery. Specific topics include new technologies for vaccine development, such as DNA vaccines, recombinant mucosal vaccines, dendritic cells for antigen delivery, novel adjuvants, and methods to increase vaccine stability. Delivery systems for vaccines, both time tested and new methodologies, such as lipid-based systems, needle- free injection systems, and novel methods, such as the use of genetically modified foods, will be discussed. The underlying biological role of the innate and adaptive immune systems will be explored in light of new types of vaccines and delivery systems. Finally, the process of bringing vaccines to market will be covered, including government oversight and licensure. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I, 410.613 Principles of Immunology, or undergraduate immunology course.

    410.631.71 - Infectious Diseases

    $4196

    Dr. Gregory

    Wednesday 6:00 - 9:20; 1/10 - 4/25

    This course focuses on infectious diseases of mankind, presented in a system-by-system format. Basic principles of host defense and microbial virulence will be discussed. Practical, up-to-date information on the clinical presentation, symptoms, physical findings, laboratory diagnosis, treatment and prevention of the general array of diseases caused by bacteria and viruses will be presented. The use of antibiotics, prophylactic agents, and vaccines along with selected aspects pathogenesis and epidemiology will be covered. More cursor coverage will be given to the fungal and parasitic agents of human disease. The student will develop a broad understanding of the many different kinds of infectious processes to which our bodies are subjected to on an ongoing basis. Prerequisites 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I.

    410.633.71 - Introduction to Bioinformatics

    $4196

    Benjamin Shoemaker
    Leonardo Marino-Ramirez
    John Anderson
    -STAFF-

    Monday 6:00 - 9:20; 1/8 - 4/30

    Retrieval and analysis of electronic information are essential today’s research environment. This course explores the theory and practice of biological database searching and analysis. In particular, students are introduced to integrated systems where a variety of data sources are connected through World Wide Web access. Information retrieval and interpretation are discussed, and many practical examples in a computer laboratory setting enable students to improve their data mining skills. Methods included in the course are searching the biomedical literature, sequence homology searching and multiple alignment, protein sequence motif analysis, and several genome analytical methods. Classes are held in a computer laboratory. Acquaintance with computers is require Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology.

    410.638.71 - Cancer Biology

    $4196

    Jessica Faupel-Badger

    Tuesday 6:00 - 9:20; 1/9 - 4/24

    This course provides students with knowledge of the fundamental principles of the molecular and cellular biology of cancer cells. Lectures and demonstrations explain the role of growth factors, oncogenes, tumor suppressor genes, angiogenesis, and signal transduction mechanisms in tumor formation. Discussion of aspects of cancer epidemiology, prevention, and principles of drug action in cancer management is part of the course. Prerequisites: All four core courses.

    410.646.71 - Creating a Biotechnology Enterprise

    $4196

    Kenneth Carter

    Thursday 6:00 - 9:20; 1/11 - 4/26

    This course provides a foundation to start or help grow a young biotechnology company from inception through early growth. Topics include market assessment of innovative technology, patents and licensing, corporate law, preparing a business plan, raising money from angels and venture capitalists, government grants, strategic alliances, sales and marketing, real estate, human resources, and regulatory affairs. The course provides a survey and overview of the key tasks and challenges typically faced by biotech entrepreneurs, their management team, and directors. Students will prepare a business plan for a biotech Startup and present the plan to a panel of industry experts and financiers. Leaders from our local bioscience community will be guest lecturers for many of the classes.

    410.652.71 - Cell Culture Techniques

    $4196

    Kristin Mullins

    Wednesday 6:00 - 9:20; 1/10 - 4/25

    This laboratory course illustrates the use of basic cell culture techniques for bioscience research and commercial applications. Students are introduced to cell cultivation methods, including proper use of a biological safety cabinet, sterile technique, ell enumeration and media preparation, cultivation of cell lines,, primary cultures, detection of contamination, cryopreservation, transfection, cell culture scale-up, and an introduction to bioassays. This course is designed for students with no prior knowledge or with limited knowledge of cell culture methods. Prerequisites: 410.601 Biochemistry; 410.603 Advanced Cell Biology I.

    410.662.71 - Epidemiology: Diseases in Populations

    $4196

    Dr. Arti Varanasi

    Wednesday 2:00 - 5:20; 1/10 - 4/25

    Epidemiology is the study of the patterns and determinants of disease in populations. It constitutes a basic science for public health and biomedical sciences, and its influence can be felt daily through the presentation of data by government, academic, and industry sources. The goal of this course is to present an introduction to epidemiological methods and inferences to biotechnology professionals with little prior experience in public health. Issues in epidemiological inference and the assessment of causal relationships from epidemiological studies will be discussed, introducing the issues of bias and confounding. Throughout the course, emphasis will be on the practical use of epidemiology and lectures will be complemented by case studies and published literature. Examples will be drawn from contemporaneous issues in chronic and infectious diseases. At the conclusion of the course, students should have a greater appreciation for the role of the epidemiologic method and be able to evaluate a basic epidemiologic study, including how the study goals and research questions relate to the design, measures, and inferences. Recommended Prerequisites: Undergraduate statistics course or 410.645 Biostatistics.

    410.692.71 - Biological & Chemical Threat Response & Forensics

    $4196

    Matthew Bender
    Calvin Chue

    Wednesday 6:00 - 9:20; 1/10 - 4/25

    This course introduces the methods and techniques used for biological and chemical threat agent characterization; methods of detection, identification, medical intervention, and forensic attribution are also discussed. Lectures cover a broad variety of topics pertaining to the use of biological and chemical agents, including: historical background of biological and chemical agents in classic and discretionary warfare, the introduction of scientific evidence in criminal proceedings and chain of custody for evidentiary materials in crimes and terrorism, quality assurance in laboratory operations, threat containment, decontamination and remediation, health and safety of responders and analysts, and risk assessments. Laboratory methods employed in the characterization and forensic analysis of biological (bacterial, viral, biological toxins, agricultural threats) and chemical agents (classic military chemical agents, toxic industrial chemicals, and materials) will also be discussed. General overviews of techniques and sample collection for classic biological and chemical agents (PCR, DNA sequencing methods, immunological analyses), and for chemical agents (gas chromatography and mass spectrometry). Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I; undergraduate Microbiology or 410.615 Microbiology.

    410.696.71 - Bioassay Development

    $4196

    Rekha Panchal

    Tuesday 6:00 - 9:20; 1/9 - 4/24

    This course will cover methodological approaches to bioassay development for high-throughput screening. Both cell-based (cytotoxicity; cytoprotection, high content imaging, and reporter systems) and cell-free assay systems (enzyme, FRET, time resolved fluorescence, quenching assays, and immunological assays) will be included with discussion of the potential prom and pitfalls associated with each assay system. Various assay formats, visualization techniques, and current developments in assay technology will be discussed. Project management techniques will be utilized to aid in the process of assay development. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I.

    410.705.71 - Communication for Health Care Professionals

    $4196

    Admon Alexander

    Thursday 6:00 - 9:45; 1/11 - 3/1

    In this course, students will practice both oral and written communication techniques and learn how to effectively communicate in formal and informal arenas. Students will work together to improve daily communications with peers, colleagues and potential patients. Coursework will focus on specific oral competencies including interviewing and being interviewed and cross-culture communications, as well as specific written competencies, including application essays, email communications and interview summaries. In all communications, emphasis will be given to getting their message across through logical and concise writing techniques. Additionally, students will discuss how communication strategies can be used to encourage or hinder changes in patient behavior and incite changes in public health.

    This is a hybrid class that will meet Thursday evening and online. The online portion of the class is equivalent to 3 hours and 20 minutes of class time per week. On the first night of class, your instructor will give you information about the online portion of the class.

    410.705.72 - Communication for Health Care Professionals

    $4196

    Admon Alexander

    Thursday 6:00 - 9:45; 3/8 - 5/3

    In this course, students will practice both oral and written communication techniques and learn how to effectively communicate in formal and informal arenas. Students will work together to improve daily communications with peers, colleagues and potential patients. Coursework will focus on specific oral competencies including interviewing and being interviewed and cross-culture communications, as well as specific written competencies, including application essays, email communications and interview summaries. In all communications, emphasis will be given to getting their message across through logical and concise writing techniques. Additionally, students will discuss how communication strategies can be used to encourage or hinder changes in patient behavior and incite changes in public health.

    This is a hybrid class that will meet Thursday evening and online. The online portion of the class is equivalent to 3 hours and 20 minutes of class time per week. On the first night of class, your instructor will give you information about the online portion of the class.

    410.707.71 - The Psychosocial Determinants of Health, Implications on Diagnostics

    $4196

    Bonnie Robeson

    Thursday 6:00 - 9:45; 1/11 - 3/1

    In this capstone course, students will learn basic diagnostic techniques and use case studies to explore the relationship between physiological illnesses and diagnostic output. Through discussions and guided interviews, students will explore the role of psychology and sociology in patient care choices, as well as physician recommendations to patients. Students will practice cultural sensitivity through group activities and discussion of pressing public health issues. Students will undertake final group projects that identify needs in the local community and attempt to create solutions they could feasibly be completed with limited resources.

    This is a hybrid class that will meet Thursday evening and online. The online portion of the class is equivalent to 3 hours and 20 minutes of class time per week. On the first night of class, your instructor will give you information about the online portion of the class.

    410.707.72 - The Psychosocial Determinants of Health, Implications on Diagnostics

    $4196

    Bonnie Robeson

    Thursday 6:00 - 9:45; 3/8 - 5/3

    In this capstone course, students will learn basic diagnostic techniques and use case studies to explore the relationship between physiological illnesses and diagnostic output. Through discussions and guided interviews, students will explore the role of psychology and sociology in patient care choices, as well as physician recommendations to patients. Students will practice cultural sensitivity through group activities and discussion of pressing public health issues. Students will undertake final group projects that identify needs in the local community and attempt to create solutions they could feasibly be completed with limited resources.

    This is a hybrid class that will meet Thursday evening and online. The online portion of the class is equivalent to 3 hours and 20 minutes of class time per week. On the first night of class, your instructor will give you information about the online portion of the class.

    410.731.71 - Bioprocessing and Scale-up Laboratory

    $4196

    Kristina Obom
    Joshua Olszewicz

    Tuesday 5:00 - 8:45; 1/2 - 1/20
    Wednesday 5:00 - 8:45; 1/3 - 1/10
    Thursday 5:00 - 8:45; 1/4 - 1/11
    Saturday 9:00 - 4:00; 1/6 - 1/13

    This course will provide students with hands-on experience in process development of biological product from a cell bank through purification. Students will develop two products; one produced in bacteria and the other in a mammalian cell culture system. Students will optimize growth conditions on a small scale and then produce the biologic in a bioreactor. Students will then purify the product after optimizing purification conditions. Topics to be covered include microbial fermentation, cell culture production, bioassays, product purification and the regulatory, engineering and business principles associated with scale-up of a biologic product. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Cell Biology 1.

    This intersession class will meet onsite 1/2, 1/3,1/4, 1/6, 1/9,1/10,1/11, 1/13. The last week of class 1/16 through 1/20 will be online.

    410.736.71 - Genomic and Personalized Medicine

    $4196

    Beatrice Kondo

    Tuesday 5:00 - 8:20; 1/9 - 4/24

    This integrative course will be of interest to a wide variety of students in different concentration areas. Applying knowledge from their core courses and introductory bioinformatics, students will examine the current applications of whole genome sequencing and genome-wide association studies in clinical medicine, and explore evolving applications and their impact on future medical diagnoses and treatments. Students will review both established and emerging sequencing platforms in detail. This course will closely examine whole-genome sequencing applications in inherited and heritable diseases and cancer, amongst others. Class discussions will include ethical, legal, regulatory, and economic implications of genomic medicine. Students and faculty will regularly report on new developments in the field as they emerge throughout the course. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.633 Introduction to Bioinformatics.

    This is a hybrid course that will meet onsite every other week and online in the alternate weeks.

    410.752.71 - High Throughput Screening & Automation Lab

    $4196

    Rekha Panchal
    -STAFF-

    Saturday 9:00 - 5:00; 1/13 - 4/28

    This course will utilize hands-on instruction in automated bioassay systems for high-throughput screening as an entry point to covering pertinent aspects of HTS, such as data manipulation, storage, and analysis; liquid handling robotics; microtiter plate washing, manipulation and bar coding; HTS assay detectors; and automated devices for assay setup, validation and visualization. Cost considerations, HTS amenable assay systems, and miniaturization and scale-up will also be discussed. Prerequisites: All four core courses and 410.696 Bioassay Development.

    Class meets every other Saturday 9 - 5: 1/20, 2/3, 2/17, 3/3, 3/17, 3/31, 4/14

    410.752.72 - High Throughput Screening & Automation Lab

    $4196

    Rekha Panchal
    -STAFF-

    Saturday 9:00 - 5:00; 1/13 - 4/28

    This course will utilize hands-on instruction in automated bioassay systems for high-throughput screening as an entry point to covering pertinent aspects of HTS, such as data manipulation, storage, and analysis; liquid handling robotics; microtiter plate washing, manipulation and bar coding; HTS assay detectors; and automated devices for assay setup, validation and visualization. Cost considerations, HTS amenable assay systems, and miniaturization and scale-up will also be discussed. Prerequisites: All four core courses and 410.696 Bioassay Development.

    Class meets every other Saturday 9 - 5 on 1/27, 2/10, 2/24, 3/10, 3/24, 4/7, 4/21

    410.800.71 - Independent Research in Biotechnology

    $4196

    Thomas Koval

    Sunday 12:00 - 12:00; 1/8 - 4/30

    Students in the biotechnology program have the opportunity to enroll in an independent research course. This elective course is an option after a student has completed at least eight-level courses and has compiled a strong academic record. Prior to proposing a project, interested students must have identified a research topic and a mentor who is familiar with their prospective inquiry, and who is willing to provide guidance and oversee the project. The research project must be independent of current work-related responsibilities as determined by the project mentor. The mentor may be a faculty member teaching in the biotechnology program, a supervisor from the student’s place of work, or any expert with appropriate credentials. Students are required to submit a formal proposal for review and approval by the biotechnology program committee. The proposal must be received by the Advanced Academic Programs office no later than one month prior to the beginning of the term in which the student wants to enroll in the course. Students must meet with a member of the program committee periodically for discussion of the project’s progress and a written document must be completed and approved by the program committee and project mentor for the student to receive graduate credit. Additional guidelines can be obtained from the AAP administrative office. Prerequisite: All four core courses and four elective courses.

    Students should contact Dr. Koval tkoval@jhu.edu before registering for the class.

    410.801.71 - Biotechnology Thesis

    $4196

    Kristina Obom

    Sunday 12:00 - 12:00; 1/8 - 4/30

    Students wishing to complete a thesis may do so by embarking on a two-semester thesis project, which includes 410.800 Independent Research Project and 410.801 Biotechnology Thesis courses. This project must be a hypothesis-based, original research study. The student must complete 410.800 Independent Research Project and fulfill the requirements of that course, including submission of project proposal, final paper, and poster presentation, before enrolling in the subsequent thesis course. For the thesis course, students are required to submit a revised proposal (an update of the 410.800 proposal) for review and approval by the faculty adviser and biotechnology program committee one month prior to the beginning of the term. Students must meet the faculty adviser periodically for discussion of the project’s progress. Graduation with a thesis is subject to approval by the thesis committee and program committee, and requires the student to present his/her project to a faculty committee both orally and in writing. Prerequisites: All four core science courses and six elective courses, which must include 410.800 Independent Research Project and 410.645 Biostatistics.

    Students should contact Dr. Obom before registering kobom@jhu.edu

  • Online Courses

    410.302.81 - Bio-Organic Chemistry

    $4196

    Kenneth Thompson

    Online 1/8 - 4/30

    This course provides a foundation in structural organic chemistry, acid base chemistry, chemical thermodynamics, and reaction mechanisms. Subjects include Lewis structures, atomic and hybridized orbitals, stereochemistry, inter- and intramolecular forces of attraction, neucleophilic reaction mechanisms, functional groups, and the organic chemistry of biological molecules. Please note that this course does not count toward requirements for the master's degree in biotechnology. Prerequisite: Two semesters of college chemistry.

    Technology Fee: $175.00

    410.303.81 - Foundations in Bioscience

    $4196

    Weiying Pan

    Online 1/8 - 4/30

    This course examines the fundamental underlying scientific concepts utilized in the creation and development of biomedical products. Topics to be covered include the structure and function of biomolecules such as proteins, enzymes, carbohydrates, lipids, and DNA, as well as the structure and function of cellular components such as membranes, vesicles, organelles, and the cytoskeleton. In addition, students will examine the complexities of metabolism, DNA replication, transcription, translation, signal transduction mechanisms, apoptosis, the cell cycle, and cancer. Please note that this course does not count toward requirements for the master's degree in either biotechnology or bioscience regulatory affairs and is required as a prerequisite course for some students entering the Master of Science in Regulatory Science.

    Technology Fee: $175.00

    410.601.81 - Biochemistry

    $4196

    Karen Wells

    Online 1/8 - 4/30

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology.

    Technology Fee: $175.00

    410.601.82 - Biochemistry

    $4196

    Karen Wells

    Online 1/8 - 4/30

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology.

    Technology Fee: $175.00

    410.601.83 - Biochemistry

    $4196

    Satarupa Das

    Online 1/8 - 4/30

    This course explores the roles of essential biological molecules focusing on protein chemistry, while covering lipids and carbohydrates. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, their binding to other molecules, and the methodologies for the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course provides the linkage between the inanimate world chemistry and the living world of biology.

    Technology Fee: $175.00

    410.602.81 - Molecular Biology

    $4196

    Sherry Ogg

    Online 1/8 - 4/30

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA Prerequisite: 410.601 Biochemistry.

    Technology Fee: $175.00

    410.602.82 - Molecular Biology

    $4196

    Sherry Ogg

    Online 1/8 - 4/30

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA Prerequisite: 410.601 Biochemistry.

    Technology Fee: $175.00

    410.602.83 - Molecular Biology

    $4196

    Dr. Mark Hollier

    Online 1/8 - 4/30

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA Prerequisite: 410.601 Biochemistry.

    Technology Fee: $175.00

    410.602.84 - Molecular Biology

    $4196

    Valerie Divito

    Online 1/8 - 4/30

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA Prerequisite: 410.601 Biochemistry.

    Technology Fee: $175.00

    410.602.85 - Molecular Biology

    $4196

    Robert Webb

    Online 1/8 - 4/30

    This course provides a comprehensive overview of the key concepts in molecular biology. Topics to be covered include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics to be covered include method in recombinant DNA technology, microarrays, and microRNA Prerequisite: 410.601 Biochemistry.

    Technology Fee: $175.00

    410.603.81 - Advanced Cell Biology I

    $4196

    Thomas Koval

    Online 1/8 - 4/30

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation.

    Technology Fee: $175.00

    410.603.82 - Advanced Cell Biology I

    $4196

    Thomas Koval

    Online 1/8 - 4/30

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation.

    Technology Fee: $175.00

    410.603.83 - Advanced Cell Biology I

    $4196

    Lisa Selbie

    Online 1/8 - 4/30

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation.

    Technology Fee: $175.00

    410.603.84 - Advanced Cell Biology I

    $4196

    Jeffrey Mahr

    Online 1/8 - 4/30

    This course covers cell organization and subcellular structure Students examine the evolution of the cell, chromosome, and plasma membrane structures and behaviors; mechanics of cell division; sites of macromolecular synthesis and processing; transport across cell membranes; cell dynamics; organelle biogenesis; and cell specialization. Students are also introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation.

    Technology Fee: $175.00

    410.604.81 - Advanced Cell Biology II

    $4196

    Thomas Koval

    Online 1/8 - 4/30

    This course is a continuation of 410.603 (Advanced Cell Biology I) and further explores cell organization and subcellular structure. Students examine cell-to-cell signaling that involves hormones and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathways to oncogenesis and other disease states will be stressed. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I.

    Technology Fee: $175.00

    410.604.82 - Advanced Cell Biology II

    $4196

    Nicole Glaser-George

    Online 1/8 - 4/30

    This course is a continuation of 410.603 (Advanced Cell Biology I) and further explores cell organization and subcellular structure. Students examine cell-to-cell signaling that involves hormones and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathways to oncogenesis and other disease states will be stressed. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I.

    Technology Fee: $175.00

    410.604.83 - Advanced Cell Biology II

    $4196

    Nicole Glaser-George

    Online 1/8 - 4/30

    This course is a continuation of 410.603 (Advanced Cell Biology I) and further explores cell organization and subcellular structure. Students examine cell-to-cell signaling that involves hormones and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathways to oncogenesis and other disease states will be stressed. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I.

    Technology Fee: $175.00

    410.604.84 - Advanced Cell Biology II

    $4196

    Lisa Selbie

    Online 1/8 - 4/30

    This course is a continuation of 410.603 (Advanced Cell Biology I) and further explores cell organization and subcellular structure. Students examine cell-to-cell signaling that involves hormones and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathways to oncogenesis and other disease states will be stressed. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I.

    Technology Fee: $175.00

    410.604.85 - Advanced Cell Biology II

    $4196

    Lisa Selbie

    Online 1/8 - 4/30

    This course is a continuation of 410.603 (Advanced Cell Biology I) and further explores cell organization and subcellular structure. Students examine cell-to-cell signaling that involves hormones and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathways to oncogenesis and other disease states will be stressed. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.603 Advanced Cell Biology I.

    Technology Fee: $175.00

    410.605.81 - Life Science Entrepreneurial Ventures

    $4196

    David Greenwald

    Online 1/8 - 4/30

    This course focuses on the knowledge, skills, and attitudes that enable entrepreneurs to pursue opportunities in life sciences. Students form teams to experience each step of the entrepreneurial process. The end result is an opportunity assessment of a business idea and the opportunity to pitch the opportunity to an active Venture Capital firm. Emphasis is placed on a hands-on approach with learning supplemented by cases appropriate to each phase of the course. Entrepreneurs and subject experts provides students with an experiential and in-depth examination of the challenges involved in identifying and assessing an opportunity for an entrepreneurial venture, whether in business-to-business or business-to-consumer settings. By entrepreneurial, we refer to those ventures that are high risk/high reward, capital intensive, scalable, and attractive targets for at risk capital investment. The course’s focus is specific to Life Sciences, including biotherapeutics, medical devices, diagnostics, health care information technology (HCIT) and digital health.

    Technology Fee: $175.00 Students may attend an optional in-person meeting at beginning and end of course, however, students may attend meeting virtually.

    410.608.81 - Neurological Disease

    $4196

    Karen Wells

    Online 1/8 - 4/30

    Knowledge about neuronal structure, function, and circuitry will be applied in order to understand the genetic and molecular bases of a wide variety of diseases that affect the central and/or peripheral nervous systems. This course will incorporate explorations of the recent primary literature, as it relates to specific disease pathologies and treatments, and innovative research tools used in their study. The particular pathologies covered will vary by semester, but will include some of the following: brain/spinal cord injury, epilepsy, stroke, multiple sclerosis, Parkinson’s disease, Alzheimer’s disease, schizophrenia, depression/bipolar disorder, amyotrophic lateral sclerosis, Huntington’s disease, infectious disease, prion-based disease, addiction, autism spectrum disorder, and disorders of neural development. This course is a natural continuation of, and builds upon the foundations provided in, the Neurobiology course. Prerequisites: All four core courses; 410.628 Neurobiology.

    Technology Fee: $175.00

    410.610.81 - Epigenetics, Gene Organization & Expression

    $4196

    Jonathan Lochamy

    Online 1/8 - 4/30

    Students use genetic analysis and molecular biology techniques to investigate chromosome organization, chromatin structure, functional genomics, and mechanisms of differential gene expression. Other topics include DNA methylation, silencers, enhancers, genomic imprinting, and microarray analysis. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology.

    Technology Fee: $175.00

    410.610.82 - Epigenetics, Gene Organization & Expression

    $4196

    Md Mizanur Rahman

    Online 1/8 - 4/30

    Students use genetic analysis and molecular biology techniques to investigate chromosome organization, chromatin structure, functional genomics, and mechanisms of differential gene expression. Other topics include DNA methylation, silencers, enhancers, genomic imprinting, and microarray analysis. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology.

    Technology Fee: $175.00

    410.612.81 - Human Molecular Genetics

    $4196

    Erin Morrey

    Online 1/8 - 4/30

    In this course, students learn to use the tools of modern genomics to elucidate phenotypic variation within populations. The course uses human disease (from simple Mendelian disorders to common, complex disorders) to exemplify the types of studies and tools that can be used to characterize cellular pathophysiology as well as to provide genetic diagnostics and therapies. Students become facile with linkage analysis, cancer genetics, microarray analysis (oligo and DNA arrays), gene therapy, SNP studies, imprinting, disequilibrium mapping, and ethical dilemmas associated with the Human Genome Project. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology.

    Technology Fee: $175.00

    410.613.81 - Principles of Immunology

    $4196

    Patrick Cummings

    Online 1/8 - 4/30

    This course covers molecular and cellular immunology, including antigen and antibody structure and function, effector mechanisms, complement, major histocompatibility complexes, B and T cell receptors, antibody formation and immunity, cytotoxic responses, and regulation of the immune response. Students are also introduced to the applied aspects of immunology, which include immunoassay design and flow cytometry. Special topics include immunomodulation, immunosuppression, immunotherapy, autoimmunity, and vaccination. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology, 410.603 Advanced Cell Biology I.

    Technology Fee: $175.00

    410.613.82 - Principles of Immunology

    $4196

    Farzaneh Sabahi

    Online 1/8 - 4/30

    This course covers molecular and cellular immunology, including antigen and antibody structure and function, effector mechanisms, complement, major histocompatibility complexes, B and T cell receptors, antibody formation and immunity, cytotoxic responses, and regulation of the immune response. Students are also introduced to the applied aspects of immunology, which include immunoassay design and flow cytometry. Special topics include immunomodulation, immunosuppression, immunotherapy, autoimmunity, and vaccination. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology, 410.603 Advanced Cell Biology I.

    Technology Fee: $175.00

    410.616.81 - Virology

    $4196

    Bruce Brown

    Online 1/8 - 4/30

    This course covers the advanced study of viruses with regard to the basic, biochemical, molecular, epidemiological, clinical, and biotechnological aspects of animal viruses primarily, and bacteriophage, plant viruses, viroid’s, prions, and unconventional agents secondarily. Specific areas of virology, including viral structure and assembly, viral replication, viral recombination and evolution, virus-host interactions, viral transformation, gene therapy, antiviral drugs, and vaccines, are presented. The major animal virus families are discussed individually with respect to classification, genomic structure, viroid structure, virus cycle, pathogenesis, clinical features, epidemiology, immunity, and control. The viral vectors and their application in biotechnology are discussed. Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology, 410.603 Advanced Cell Biology I.

    Technology Fee: $175.00

    410.627.81 - Translational Biotechnology:From Intellectual Property to Licensing

    $4196

    Timothy Alcorn

    Online 1/8 - 4/30

    This course provides an extensive overview of a process for development of a pharmaceutical by a biotechnology company or pharmaceutical company. The course emphasizes the importance of intellectual property, the basic sciences underpinning the development of a product, and the importance of the interaction between a company and the Food and Drug Administration. Students learn to appreciate the importance of quality control and assurance, good manufacturing practices, preclinical and clinical testing, and the lengthy regulatory processes that govern the development, manufacture, and eventual sale of biotechnological products. Hands-on solving of practical problems and guest lecturers who are experts in the field familiarize students with the intricacies of the process. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology or admission to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs.

    Technology Fee: $175.00

    410.627.82 - Translational Biotechnology:From Intellectual Property to Licensing

    $4196

    Timothy Alcorn

    Online 1/8 - 4/30

    This course provides an extensive overview of a process for development of a pharmaceutical by a biotechnology company or pharmaceutical company. The course emphasizes the importance of intellectual property, the basic sciences underpinning the development of a product, and the importance of the interaction between a company and the Food and Drug Administration. Students learn to appreciate the importance of quality control and assurance, good manufacturing practices, preclinical and clinical testing, and the lengthy regulatory processes that govern the development, manufacture, and eventual sale of biotechnological products. Hands-on solving of practical problems and guest lecturers who are experts in the field familiarize students with the intricacies of the process. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology or admission to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs.

    Technology Fee: $175.00

    410.627.83 - Translational Biotechnology:From Intellectual Property to Licensing

    $4196

    Bonnie Robeson

    Online 1/8 - 4/30

    This course provides an extensive overview of a process for development of a pharmaceutical by a biotechnology company or pharmaceutical company. The course emphasizes the importance of intellectual property, the basic sciences underpinning the development of a product, and the importance of the interaction between a company and the Food and Drug Administration. Students learn to appreciate the importance of quality control and assurance, good manufacturing practices, preclinical and clinical testing, and the lengthy regulatory processes that govern the development, manufacture, and eventual sale of biotechnological products. Hands-on solving of practical problems and guest lecturers who are experts in the field familiarize students with the intricacies of the process. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology or admission to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs.

    Technology Fee: $175.00

    410.629.81 - Genes & Disease

    $4196

    Kristina Obom

    Online 1/8 - 4/30

    Because of recent advances, powerful diagnostic tests now detect genetic diseases, and there is promise of gene replacement therapy. In this course, students cover general genetic principles, DNA tools for genetic analysis, cytogenetics, gene mapping, the molecular basis of genetic diseases, animal models, immunogenetics, genetics of development, genetics of cancer, and treatment of genetic diseases. Molecular methods of analysis are emphasized. Prerequisites: All four core courses.

    Technology Fee: $175.00

    410.632.81 - Emerging Infectious Diseases

    $4196

    Stacy Plum

    Online 1/8 - 4/30

    This course focuses on emerging infectious diseases from many different perspectives. The maladies addressed range from diseases that have reappeared in altered genetic forms, such as the influenza virus and West Nile virus, to the lethal hemorrhagic fever caused by the Ebola virus. Also discussed is the threat of recombinant and ancient infectious agents, such as Bacillus anthracis, causative agent of anthrax, which ca be used in biological warfare weapons. Opinions from noted scientists and leaders concerning emerging diseases and the prospects for battling them successfully provide scientific and social perspective. Prerequisites: 410.601 Biochemistry, 410.60 Molecular Biology, 410.603 Advanced Cell Biology I.

    Technology Fee: $175.00

    410.633.81 - Introduction to Bioinformatics

    $4196

    Sherry Ogg

    Online 1/8 - 4/30

    Retrieval and analysis of electronic information are essential today’s research environment. This course explores the theory and practice of biological database searching and analysis. In particular, students are introduced to integrated systems where a variety of data sources are connected through World Wide Web access. Information retrieval and interpretation are discussed, and many practical examples in a computer laboratory setting enable students to improve their data mining skills. Methods included in the course are searching the biomedical literature, sequence homology searching and multiple alignment, protein sequence motif analysis, and several genome analytical methods. Classes are held in a computer laboratory. Acquaintance with computers is require Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology.

    Technology Fee: $175.00

    410.633.82 - Introduction to Bioinformatics

    $4196

    Sherry Ogg

    Online 1/8 - 4/30

    Retrieval and analysis of electronic information are essential today’s research environment. This course explores the theory and practice of biological database searching and analysis. In particular, students are introduced to integrated systems where a variety of data sources are connected through World Wide Web access. Information retrieval and interpretation are discussed, and many practical examples in a computer laboratory setting enable students to improve their data mining skills. Methods included in the course are searching the biomedical literature, sequence homology searching and multiple alignment, protein sequence motif analysis, and several genome analytical methods. Classes are held in a computer laboratory. Acquaintance with computers is require Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology.

    Technology Fee: $175.00

    410.633.83 - Introduction to Bioinformatics

    $4196

    Jarrett Morrow

    Online 1/8 - 4/30

    Retrieval and analysis of electronic information are essential today’s research environment. This course explores the theory and practice of biological database searching and analysis. In particular, students are introduced to integrated systems where a variety of data sources are connected through World Wide Web access. Information retrieval and interpretation are discussed, and many practical examples in a computer laboratory setting enable students to improve their data mining skills. Methods included in the course are searching the biomedical literature, sequence homology searching and multiple alignment, protein sequence motif analysis, and several genome analytical methods. Classes are held in a computer laboratory. Acquaintance with computers is require Prerequisites: 410.601 Biochemistry, 410.602 Molecular Biology.

    Technology Fee: $175.00

    410.634.81 - Practical Computer Concepts for Bioinformatics

    $4196

    Joshua Orvis

    Online 1/8 - 4/30

    This course introduces students with a background in the life sciences to the basic computing concepts of the UNIX operating system, relational databases, structured programming, object-oriented programming, and the Internet. Included is an introduction to SQL and the Python scripting language. The course emphasizes relevance to molecular biology and bioinformatics. It is intended for students with no computer programming background but with a solid knowledge of molecular biology.

    Technology Fee: $175.00

    410.634.82 - Practical Computer Concepts for Bioinformatics

    $4196

    Jarrett Morrow

    Online 1/8 - 4/30

    This course introduces students with a background in the life sciences to the basic computing concepts of the UNIX operating system, relational databases, structured programming, object-oriented programming, and the Internet. Included is an introduction to SQL and the Python scripting language. The course emphasizes relevance to molecular biology and bioinformatics. It is intended for students with no computer programming background but with a solid knowledge of molecular biology.

    Technology Fee: $175.00

    410.634.83 - Practical Computer Concepts for Bioinformatics

    $4196

    Joshua Orvis

    Online 1/8 - 4/30

    This course introduces students with a background in the life sciences to the basic computing concepts of the UNIX operating system, relational databases, structured programming, object-oriented programming, and the Internet. Included is an introduction to SQL and the Python scripting language. The course emphasizes relevance to molecular biology and bioinformatics. It is intended for students with no computer programming background but with a solid knowledge of molecular biology.

    Technology Fee: $175.00

    410.635.81 - Bioinformatics:Tools for Genome Analysis

    $4196

    -STAFF-

    Online 1/8 - 4/30

    Several large-scale DNA sequencing efforts have resulted in megabase amounts of DNA sequences being deposited in public databases. As such, the sequences are of less use than those sequences that are fully annotated. Assigning annotations, such as exon boundaries, repeat regions, and other biologically relevant information, accurately in the feature tables of these sequences requires a significant amount of human intervention. This course instructs students on computer analytical methods for gene identification, promoter analysis, and introductory gene expression analysis using software methods. Additionally, students are introduced to comparative genomics and proteomic analysis methods. Students will become proficient in annotating large genomic DNA sequences. Students complete two large sequence analysis projects during the course. Prerequisites: 410.601 Biochemistry; 410.602 Molecular Biology; 410.633 Introduction to Bioinformatics; or all Bioinformatics core courses.

    Technology Fee: $175.00

    410.638.81 - Cancer Biology

    $4196

    Meredith Safford

    Online 1/8 - 4/30

    This course provides students with knowledge of the fundamental principles of the molecular and cellular biology of cancer cells. Lectures and demonstrations explain the role of growth factors, oncogenes, tumor suppressor genes, angiogenesis, and signal transduction mechanisms in tumor formation. Discussion of aspects of cancer epidemiology, prevention, and principles of drug action in cancer management is part of the course. Prerequisites: All four core courses.

    Technology Fee: $175.00

    410.638.82 - Cancer Biology

    $4196

    Laundette Jones

    Online 1/8 - 4/30

    This course provides students with knowledge of the fundamental principles of the molecular and cellular biology of cancer cells. Lectures and demonstrations explain the role of growth factors, oncogenes, tumor suppressor genes, angiogenesis, and signal transduction mechanisms in tumor formation. Discussion of aspects of cancer epidemiology, prevention, and principles of drug action in cancer management is part of the course. Prerequisites: All four core courses.

    Technology Fee: $175.00

    410.642.81 - Economic Dynamics of Change in Biotechnology

    $4196

    Fredric Abramson

    Online 1/8 - 4/30

    Governments around the world are beginning a long-term process that reviews and redesigns its health care systems addressing concerns of innovation, cost, equitable access, and sustained quality of health care. As a result health care is undergoing significant changes globally in R&D, marketing, pricing, sales, and distribution. This course helps students to understand these processes and the new business opportunities and new business models they will create. It provides some of the basics of macro and microeconomics to clarify how economic and social forces drive changes in the pharmaceutical, biotech, and genetic industry. Emphasis will be placed on the application of economics.

    Technology Fee: $175.00

    410.644.81 - Marketing Aspects of Biotechnology

    $4196

    Phillip Farmer

    Online 1/8 - 4/30

    This course introduces students to the strategic and tactical approaches used in the marketing of biotechnological products and services. Students gain a thorough understanding of the research and planning necessary to develop a marketing plan, the relationship between the marketing and sales functions, the difference between marketing a scientific product and a scientific service, pricing strategies, distribution alternatives, communications, promotion, and the importance of perception. Knowledge of marketing terminology and techniques prove helpful to anyone in the industry.

    Technology Fee: $175.00

    410.645.81 - Biostatistics

    $4196

    William McCarthy

    Online 1/8 - 4/30

    This course introduces statistical concepts and analytical methods as applied to data encountered in biotechnology and biomedical sciences. It emphasizes the basic concepts of experimental design, quantitative analysis of data, and statistical inferences. Topics include probability theory and distributions; population parameters and their sample estimates; descriptive statistics for central tendency and dispersion; hypothesis testing and confidence intervals for means, variances, and proportions; the chi-square statistic; categorical data analysis; linear correlation and regression model; analysis of variance; and nonparametric methods. The course provides students a foundation to evaluate information critically to support research objectives and product claims and a better understanding of statistical design of experimental trials for biological products/devices. Prerequisites: Basic mathematics (algebra), scientific calculator.

    Technology Fee: $175.00

    410.645.82 - Biostatistics

    $4196

    Martha Nason

    Online 1/8 - 4/30

    This course introduces statistical concepts and analytical methods as applied to data encountered in biotechnology and biomedical sciences. It emphasizes the basic concepts of experimental design, quantitative analysis of data, and statistical inferences. Topics include probability theory and distributions; population parameters and their sample estimates; descriptive statistics for central tendency and dispersion; hypothesis testing and confidence intervals for means, variances, and proportions; the chi-square statistic; categorical data analysis; linear correlation and regression model; analysis of variance; and nonparametric methods. The course provides students a foundation to evaluate information critically to support research objectives and product claims and a better understanding of statistical design of experimental trials for biological products/devices. Prerequisites: Basic mathematics (algebra), scientific calculator.

    Technology Fee: $175.00

    410.649.81 - Introduction to Regulatory Affairs

    $4196

    Susan Zecchini

    Online 1/8 - 4/30

    Regulatory affairs comprise the rules and regulations govern product development and post-approval marketing. In the U.S. the FDA establishes and oversees the applicable regulations under several statutes, many regulations, and partnership with legislators, patients, and customers. Biotechnology products may be classified as drugs, biologics, or medical devices. Each type is regulated by a different center within the FDA. This course provides an overview of RA and its effect on product development. Topics include RA history, regulatory agencies, how to access regulatory information, drug submissions, biologics submissions, medical device submissions, GLP, GCP, GMP, and FDA inspections.

    Technology Fee: $175.00

    410.649.82 - Introduction to Regulatory Affairs

    $4196

    Suzanne Fitzpatrick

    Online 1/8 - 4/30

    Regulatory affairs comprise the rules and regulations govern product development and post-approval marketing. In the U.S. the FDA establishes and oversees the applicable regulations under several statutes, many regulations, and partnership with legislators, patients, and customers. Biotechnology products may be classified as drugs, biologics, or medical devices. Each type is regulated by a different center within the FDA. This course provides an overview of RA and its effect on product development. Topics include RA history, regulatory agencies, how to access regulatory information, drug submissions, biologics submissions, medical device submissions, GLP, GCP, GMP, and FDA inspections.

    Technology Fee: $175.00

    410.650.81 - Legal Aspects of Biotechnology

    $4196

    Reid Adler

    Online 1/8 - 4/30

    This course is a survey of legal topics relevant to a biotech enterprise as it is established, conducts research, and brings innovative products to market. These include property, contracts, regulatory compliance, and patents. Students will be able to analyze common business situations and understand how associated legal risks are managed. Students who have taken 410.687 Ethical, Legal and Regulatory Aspects of the Biotechnology Enterprise will also benefit from this course, as they will analyze contracts, patents, and various statutes and court decisions that impact the biotechnology sector.

    Technology Fee: $175.00

    410.651.81 - Clinical Development of Drugs and Biologics

    $4196

    Jonathan Helfgott
    Michael Marcarelli

    Online 1/8 - 4/30

    This course introduces students to the planning and work required to develop potential new drugs and biologics efficiently. Students gain a thorough appreciation of FDA and International Council for Harmonisation regulations and guidelines. Because the course emphasizes the importance of planning before the execution of any of the necessary steps, lectures use a “backward” approach, discussing the final analysis and report before developing protocols. Topics also include an overview of preclinical investigations; NDA/BLA format and content; clinical development plans; product and assay development; the IND; and trial design, implementation, and management. Prerequisites: 410.303 Foundations of Bioscience OR 410.601 Biochemistry and 410.603 Advanced Cell Biology OR admission to the MS in Regulatory Science Program OR Master of Biotechnology Enterprise and Entrepreneurship programs.

    Technology Fee: $175.00

    410.651.82 - Clinical Development of Drugs and Biologics

    $4196

    Christopher Breder

    Online 1/8 - 4/30

    This course introduces students to the planning and work required to develop potential new drugs and biologics efficiently. Students gain a thorough appreciation of FDA and International Council for Harmonisation regulations and guidelines. Because the course emphasizes the importance of planning before the execution of any of the necessary steps, lectures use a “backward” approach, discussing the final analysis and report before developing protocols. Topics also include an overview of preclinical investigations; NDA/BLA format and content; clinical development plans; product and assay development; the IND; and trial design, implementation, and management. Prerequisites: 410.303 Foundations of Bioscience OR 410.601 Biochemistry and 410.603 Advanced Cell Biology OR admission to the MS in Regulatory Science Program OR Master of Biotechnology Enterprise and Entrepreneurship programs.

    Technology Fee: $175.00

    410.651.83 - Clinical Development of Drugs and Biologics

    $4196

    Bharat Khurana

    Online 1/8 - 4/7

    This course introduces students to the planning and work required to develop potential new drugs and biologics efficiently. Students gain a thorough appreciation of FDA and International Council for Harmonisation regulations and guidelines. Because the course emphasizes the importance of planning before the execution of any of the necessary steps, lectures use a “backward” approach, discussing the final analysis and report before developing protocols. Topics also include an overview of preclinical investigations; NDA/BLA format and content; clinical development plans; product and assay development; the IND; and trial design, implementation, and management. Prerequisites: 410.303 Foundations of Bioscience OR 410.601 Biochemistry and 410.603 Advanced Cell Biology OR admission to the MS in Regulatory Science Program OR Master of Biotechnology Enterprise and Entrepreneurship programs.

    Technology Fee: $175.00

    410.662.81 - Epidemiology: Diseases in Populations

    $4196

    Elizabeth Golub

    Online 1/8 - 4/30

    Epidemiology is the study of the patterns and determinants of disease in populations. It constitutes a basic science for public health and biomedical sciences, and its influence can be felt daily through the presentation of data by government, academic, and industry sources. The goal of this course is to present an introduction to epidemiological methods and inferences to biotechnology professionals with little prior experience in public health. Issues in epidemiological inference and the assessment of causal relationships from epidemiological studies will be discussed, introducing the issues of bias and confounding. Throughout the course, emphasis will be on the practical use of epidemiology and lectures will be complemented by case studies and published literature. Examples will be drawn from contemporaneous issues in chronic and infectious diseases. At the conclusion of the course, students should have a greater appreciation for the role of the epidemiologic method and be able to evaluate a basic epidemiologic study, including how the study goals and research questions relate to the design, measures, and inferences. Recommended Prerequisites: Undergraduate statistics course or 410.645 Biostatistics.

    Technology Fee: $175.00

    410.666.81 - Next Generation DNA Sequencing and Analysis

    $4196

    -STAFF-

    Online 1/8 - 4/30

    The recent revolution in DNA sequencing technologies has transformed biology within a few short years, dropping the cost and ease of sequencing dramatically to the point where the “$1,000 Human Genome” is in sight. Armed with complete genome sequences, biologists need to identify the genes encoded within and the variation in these genes between individuals, assign functions to the genes, and to put these into functional and metabolic pathways. This course will provide an overview of next generation sequencing technologies in the historical context of DNA sequencing, the pros and cons of each technology, and the bioinformatics techniques used with this sequence information, beginning with quality control assessment, genome assembly and annotation. Prerequisites: 410.602 Molecular Biology; 410.633 Introduction to Bioinformatics; 410.634 Practical Computer Concepts for Bioinformatics.

    Technology Fee: $175.00

    410.673.81 - Biological Processes in Regulatory Affairs

    $4196

    Jamie Austin

    Online 1/8 - 4/30

    This course provides an overview of the biological processes laboratory techniques utilized for the discovery, development and evaluation of therapeutic drugs. Students investigate drug development processes, such as gene cloning, culture scale-u downstream processing, and product purification. Emphasis is placed on the theory and application of laboratory methods u in drug development, such as recombinant DNA techniques, antibody technology, protein purification, immunoassays, high throughput drug screening, chromatography, electrophoresis cell receptor characterization, pharmacokinetics, drug toxicity testing and evaluation of therapeutic drugs, diagnostics, and vaccines. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology OR admissions to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs.

    Technology Fee: $175.00

    410.673.82 - Biological Processes in Regulatory Affairs

    $4196

    Markus Yap

    Online 1/8 - 4/30

    This course provides an overview of the biological processes laboratory techniques utilized for the discovery, development and evaluation of therapeutic drugs. Students investigate drug development processes, such as gene cloning, culture scale-u downstream processing, and product purification. Emphasis is placed on the theory and application of laboratory methods u in drug development, such as recombinant DNA techniques, antibody technology, protein purification, immunoassays, high throughput drug screening, chromatography, electrophoresis cell receptor characterization, pharmacokinetics, drug toxicity testing and evaluation of therapeutic drugs, diagnostics, and vaccines. Prerequisites: 410.303 Bioscience for Regulatory Affairs, OR 410.601 Biochemistry and 410.603 Advanced Cell Biology OR admissions to the MS in Regulatory Science OR Master of Biotechnology Enterprise and Entrepreneurship programs.

    Technology Fee: $175.00

    410.675.81 - International Regulatory Affairs

    $4196

    Suzanne Fitzpatrick

    Online 1/8 - 4/30

    Pharmaceutical/biotechnology product approval and marketing requires a good understanding of international regulatory affairs in order to successfully compete in today’s global marketplace. It is important for tomorrow’s leaders to understand and follow the regulatory differences to ensure optimum product development strategies, regulatory approvals, and designs for exports conforming to the foreign regulatory bodies. There are various product development strategies that industry is using to shorten the product development time by conducting preclinical programs outside the U.S., but the strategy requires careful planning and interaction with the U.S. and foreign regulatory agencies. With the increase in globalization of economy and exports, international regulations will have a bigger impact on the biotechnology business in the future. The course provides a review and analysis of the pharmaceutical/biotechnology product approval processes within the world’s major markets. The key strategies required in preclinical product development to marketing approval of the products in Europe, Japan, and the U.S. will be compared and discussed. Students will explore the European Union regulations and their overall importance on international markets. The course will cover the salient features of common technical and regulatory documents required for submission and approval to the leading regulatory bodies in the world, general guidance documents, international harmonization, and the General Agreement on Tariffs and Trade.

    Technology Fee: $175.00

    410.676.81 - Food And Drug Law

    $4196

    Loretta Chi

    Online 1/8 - 4/30

    The Food, Drug, and Cosmetic Act (FD&C Act) governs the regulatory approval process for bringing a drug, biologic, medical device, food, or cosmetic to market. The class will discuss administrative procedures followed by the FDA. The course includes an overview of the drug, biologic, and medical device approval processes, and the regulation of food and dietary supplements. Students then will be exposed to the enforcement activities of the FDA, including searches, seizure actions, injunctions, criminal prosecutions, and civil penalties authorized under the FD&C Act, as well as other statutes like the Public Health Service Act (which regulates the development and approval of biologics).

    Technology Fee: $175.00

    410.676.82 - Food And Drug Law

    $4196

    Emil Wang

    Online 1/8 - 4/30

    The Food, Drug, and Cosmetic Act (FD&C Act) governs the regulatory approval process for bringing a drug, biologic, medical device, food, or cosmetic to market. The class will discuss administrative procedures followed by the FDA. The course includes an overview of the drug, biologic, and medical device approval processes, and the regulation of food and dietary supplements. Students then will be exposed to the enforcement activities of the FDA, including searches, seizure actions, injunctions, criminal prosecutions, and civil penalties authorized under the FD&C Act, as well as other statutes like the Public Health Service Act (which regulates the development and approval of biologics).

    Technology Fee: $175.00

    410.679.81 - Practicum in Regulatory Science

    $4196

    Thomas Colonna

    Online 1/8 - 4/30

    This integrative, case-based course will focus on applying knowledge gained from previous courses in the Master of Science in Regulatory Science program to actual cases from the FDA. For each case, students will assume the role of regulatory specialist, an FDA reviewer or senior-level policy-maker, or other involved stakeholders, such as a consumer group or an advocacy group. Students will be expected to research, evaluate, and present scientifically and legally justifiable positions on case studies from the perspective of their assigned roles. Students will present their perspectives to the class and be asked to debate the issues with the other students from the perspective of their assigned roles. The major responsibility of the students in this course will be to make scientifically and legally defensible recommendations and to justify them through oral and written communication. Please note this course is only open to students in the Master of Science in Regulatory Science and should only be taken after all required courses are completed.

    Technology Fee: $175.00

    410.679.82 - Practicum in Regulatory Science

    $4196

    Thomas Colonna

    Online 1/8 - 4/30

    This integrative, case-based course will focus on applying knowledge gained from previous courses in the Master of Science in Regulatory Science program to actual cases from the FDA. For each case, students will assume the role of regulatory specialist, an FDA reviewer or senior-level policy-maker, or other involved stakeholders, such as a consumer group or an advocacy group. Students will be expected to research, evaluate, and present scientifically and legally justifiable positions on case studies from the perspective of their assigned roles. Students will present their perspectives to the class and be asked to debate the issues with the other students from the perspective of their assigned roles. The major responsibility of the students in this course will be to make scientifically and legally defensible recommendations and to justify them through oral and written communication. Please note this course is only open to students in the Master of Science in Regulatory Science and should only be taken after all required courses are completed.

    Technology Fee: $175.00

    410.680.81 - Finance for Biotechnology

    $4196

    Anthony Schwartz

    Online 1/8 - 4/30

    Students will build an understanding of the basics of contemporary global monetary systems and the essentials of financial management. This course will include a means to develop a working knowledge of the critical financial factors for decision-makers from the perspectives of key stakeholders. The syllabus is designed to provide students with limited or no background in finance an opportunity to establish a means to understand financial basics and communicate clearly in financial terms when conducting business. This course is uniquely designed to meet the current needs of those leading the global life science industry.

    Technology Fee: $175.00

    410.680.82 - Finance for Biotechnology

    $4196

    Norman Marcus

    Online 1/8 - 4/30

    Students will build an understanding of the basics of contemporary global monetary systems and the essentials of financial management. This course will include a means to develop a working knowledge of the critical financial factors for decision-makers from the perspectives of key stakeholders. The syllabus is designed to provide students with limited or no background in finance an opportunity to establish a means to understand financial basics and communicate clearly in financial terms when conducting business. This course is uniquely designed to meet the current needs of those leading the global life science industry.

    Technology Fee: $175.00

    410.682.81 - Validation in Biotechnology

    $4196

    Jonathan Helfgott

    Online 1/8 - 4/30

    Understanding validation and applying a comprehensive validation philosophy are essential in today's biotechnology industry. First and foremost, validation allows a company to operate in compliance with the regulations and guidance set forth by FDA. Perhaps more importantly, it results in equipment, assays, and processes that are well-understood and robust, less prone to failure, and more cost-effective. This course will introduce the fundamentals of validation, validation master planning, resource management, types of validation and the associated documentation, departmental roles and interaction, and the differences between commissioning and validation. Students will have an opportunity to solve real-world problems, generate actual validation documents, and develop validation program elements that balance regulatory requirements, operational needs, and business expectations.

    Technology Fee: $175.00

    410.683.81 - Introduction to cGMP Compliance

    $4196

    Nancy Karaszkiewicz

    Online 1/8 - 4/30

    Current Good Manufacturing Practice regulations are the minimum standards for the design, production, and distribution of drugs, biologics and medical devices in the U.S. and internationally. In the U.S., they are codified at the federal level, in the FD&C Act and the CFR, and actively enforced by FDA. These regulations, however, only begin to describe the practices used in the pharmaceutical and biotech industries. Additional sources of insight and guidance include FDA's guidance documents and training manuals, industry trade publications, international compendia, and standards-setting organizations. Students will learn the scope and history of the regulations, industry-standard implementation strategies and "best-practices" approaches, and FDA's current expectations. Students will also learn to apply practical solutions to the regulatory issues faced in the pharmaceutical and biotech industries today.

    Technology Fee: $175.00

    410.683.82 - Introduction to cGMP Compliance

    $4196

    Nicholas Cohen

    Online 1/8 - 4/30

    Current Good Manufacturing Practice regulations are the minimum standards for the design, production, and distribution of drugs, biologics and medical devices in the U.S. and internationally. In the U.S., they are codified at the federal level, in the FD&C Act and the CFR, and actively enforced by FDA. These regulations, however, only begin to describe the practices used in the pharmaceutical and biotech industries. Additional sources of insight and guidance include FDA's guidance documents and training manuals, industry trade publications, international compendia, and standards-setting organizations. Students will learn the scope and history of the regulations, industry-standard implementation strategies and "best-practices" approaches, and FDA's current expectations. Students will also learn to apply practical solutions to the regulatory issues faced in the pharmaceutical and biotech industries today.

    Technology Fee: $175.00

    410.686.81 - Regulation of Good Food Production Practices

    $4196

    Kantha Shelke

    Online 1/8 - 4/30

    Good Food Production Practices are production and farm level approaches to ensure the safety of food for human consumption. Good food production and post-harvest guidelines are designed to reduce the risk of foodborne disease contamination. These good food production procedures can be tailored to any production system and are directed toward the primary sources of contamination: soil, water, hands, and surfaces. Good food production protocols were developed in response to the increase in the number of outbreaks of foodborne diseases resulting from contaminated food. Students will learn to develop good food production regulatory protocols using case studies.

    Technology Fee: $175.00

    410.687.81 - Ethical,Legal & Regulatory Aspects of the Biotechnology Enterprise

    $4196

    Katherine Wellman

    Online 1/8 - 4/30

    This course provides an overview of the important ethical, legal and regulatory issues that are critical to the biotechnology industry. The course shares current trends and essential elements of ethics, legal issues and regulations in a way that allows for an appreciation of how each influences the others. Students will examine core ethical values that guide the practice of science in the biotechnology industry. The course will provide an overview of legal issues such as protecting inventions and intellectual property and licensing, and the range of regulatory oversight mechanisms with which the biotech industry must comply. This course will review the implications of strategic ethical, legal and regulatory choices that add value to the biotechnology firm, customers and society. (Research Adminstration elective. Prerequisites in Biotechnology apply. Contact the director of the MS in Research Admin).

    Technology Fee: $175.00

    410.687.82 - Ethical,Legal & Regulatory Aspects of the Biotechnology Enterprise

    $4196

    Katherine Wellman

    Online 1/8 - 4/30

    This course provides an overview of the important ethical, legal and regulatory issues that are critical to the biotechnology industry. The course shares current trends and essential elements of ethics, legal issues and regulations in a way that allows for an appreciation of how each influences the others. Students will examine core ethical values that guide the practice of science in the biotechnology industry. The course will provide an overview of legal issues such as protecting inventions and intellectual property and licensing, and the range of regulatory oversight mechanisms with which the biotech industry must comply. This course will review the implications of strategic ethical, legal and regulatory choices that add value to the biotechnology firm, customers and society. (Research Adminstration elective. Prerequisites in Biotechnology apply. Contact the director of the MS in Research Admin).

    Technology Fee: $175.00

    410.687.83 - Ethical,Legal & Regulatory Aspects of the Biotechnology Enterprise

    $4196

    Katherine Wellman

    Online 1/8 - 4/30

    This course provides an overview of the important ethical, legal and regulatory issues that are critical to the biotechnology industry. The course shares current trends and essential elements of ethics, legal issues and regulations in a way that allows for an appreciation of how each influences the others. Students will examine core ethical values that guide the practice of science in the biotechnology industry. The course will provide an overview of legal issues such as protecting inventions and intellectual property and licensing, and the range of regulatory oversight mechanisms with which the biotech industry must comply. This course will review the implications of strategic ethical, legal and regulatory choices that add value to the biotechnology firm, customers and society. (Research Adminstration elective. Prerequisites in Biotechnology apply. Contact the director of the MS in Research Admin).

    Technology Fee: $175.00

    410.688.81 - Project Management in Biotechnology

    $4196

    Manojit Basu

    Online 1/8 - 4/30

    Today, many organizations use the approach called project management to handle activities that have a limited life span, as opposed to routine, ongoing operations. This course will answer the question "What do I do to be successful?" The units will provide guidance for project management success by considering each phase in the life of a typical project, from concept to closeout. We will discuss the nature of project management, the structure of projects, working with teams of technical experts, and all the other activities that make project management different from any other discipline. The course will rely heavily on group discussions. Topics will include deciding what to do, developing a project plan, risk management, team leadership, monitoring and controlling during the project, scope change control, and traditional and modern approaches to project closeout. Concepts presented will be consistent with the Project Management Institute's "Guide to the Project Management Body of Knowledge," the U.S. standard for project management.

    Technology Fee: $175.00

    410.689.81 - Leading Change in Biotechnology

    $4196

    Lynn Johnson Langer

    Online 1/8 - 4/30

    As bioscience companies grow and mature, leadership needs evolve. Students will learn how to identify their company's position in the "Leadership Life Cycle" and learn how to select the right leadership capabilities based on their current organizational needs. Research shows that the right leaders at the right time dramatically improve organizational success. Discussions will address the leadership needs of organizations from early-stage research-based companies through fully integrated biopharmaceuticals. General leadership practices and strategies, moving ideas from research bench to the consumer, and strategies to prevent failure will all be discussed.

    Technology Fee: $175.00

    410.689.82 - Leading Change in Biotechnology

    $4196

    -STAFF-

    Online 1/8 - 4/30

    As bioscience companies grow and mature, leadership needs evolve. Students will learn how to identify their company's position in the "Leadership Life Cycle" and learn how to select the right leadership capabilities based on their current organizational needs. Research shows that the right leaders at the right time dramatically improve organizational success. Discussions will address the leadership needs of organizations from early-stage research-based companies through fully integrated biopharmaceuticals. General leadership practices and strategies, moving ideas from research bench to the consumer, and strategies to prevent failure will all be discussed.

    Technology Fee: $175.00

    410.690.81 - International Food Regulations

    $4196

    Michelle Wright
    Gavin Smith

    Online 1/8 - 4/30

    As the U.S. food industry expands into international markets, the same companies hoping to sell their products abroad find themselves forced to source ingredients and finished products from foreign suppliers to reduce costs and remain competitive; and to do so, they must comply with a myriad of rules and regulations in both the United States and elsewhere. The most visible enforcement agency at any U.S. border is Customs and Border Protection. However, food importers must also comply with regulations enacted by a host of other government agencies, most notably FDA, USDA Food Safety and Inspection Service, USDA Animal and Plant Health Inspection Service, and U.S. Fish & Wildlife Service. Food exporters have an even tougher burden, as they need to comply with Customs and food safety, quality, and labeling regulations and certification requirements in both U.S. and the country that is receiving the goods; and this is to mention nothing of the international regulatory infrastructure to which manufacturers must adhere when shipping food internationally. This course will cover each step of the importing and exporting process in detail, and explain where to go for key information and guidance.

    Technology Fee: $175.00

    410.700.81 - Food Labeling and Packaging Regulations

    $4196

    Michelle Wright

    Online 1/8 - 4/30

    The Nutrition Labeling and Education Act of 1990, which amended the FD&C Act, requires most foods to bear nutrition labeling and requires food labels that bear nutrient content claims and certain health messages to comply with specific requirements. The NLEA and the final regulations to implement the NLEA provide for a number of fundamental changes in how food is labeled, including requiring that nutrition labeling be placed on most foods, requiring that terms that characterize the level of nutrients in a food be used in accordance with definitions established by the FDA, and providing for the use of claims about the relationship between nutrients and diseases or health-related conditions. These changes apply to virtually all foods in the food supply, including, in large measure, to foods sold in restaurants. Food labeling is required for most prepared foods, such as breads, cereals, canned and frozen foods, snacks, desserts, drinks, etc. Nutrition labeling for raw produce (fruits and vegetables) and fish is voluntary.

    Technology Fee: $175.00

    410.701.81 - Introduction to Food Safety

    $4196

    Thomas Colonna
    Om Singh

    Online 1/8 - 4/30

    This course is designed to understand the legal and regulatory complexities of the regulation of food products in the United States. The prone issues, including regulatory compliance in food safety and Hazard Analysis and Critical Control points (HACCP), are among major issues to control the food-supply. The Food and Drug Administration (FDA) and the U.S. Department of Agriculture (USDA) have primary responsibility for safety of meat and food products. Based on the principles of HACCP, FDA-issued seafood regulations effective in Dec. 1997. However, the regulation of food additives, labeling, dietary supplements, genetic modifications (GM) and the protection of the food supply will provide the in-depth of food regulation in the United States. The FDA and USDA regulate the safe practice of primary and secondary food products to the American public. Depending upon the source and nature of food product, the method of shipment, advertisement of nutritional values etc., are being governed by FDA and USDA jurisdictions. The Food Safety Modernization Act overhauls the FDA in food surveillance, enforcing regulations on specific targets, inspection records examination, and exemptions. In this course, students will learn the existing food regulations and safety net by examining the product tracing, performance standards and preventive control plans toward food safety, security, genetic modifications, dietary supplements, and food labeling etc. Students will have option to design projects to propose effective food safety net that can assist in the supply chain of the nation's food safety and security.

    Technology Fee: $175.00

    410.709.81 - Cancer Genomics

    $4196

    Meredith Safford

    Online 1/8 - 4/30

    Alterations to the genome are the basis of cancer development, but not all mutations cause cancer. Cancer genomics is the study of cancer cell genomes to elucidate how changes in the genome drive cancer development, and how these changes can be targeted for better prevention, diagnosis and treatment of cancer. In this course, students learn about the multi-step process of tumorigenesis and the confounding development of passenger mutations. Students will use bioinformatics tools to analyze human cancer genomic data sets to understand the genetic basis of cancer and how to identify genetic signatures that differentiate one type of cancer from another. Activities include the identification of actionable mutations and biomarkers in hypothetical patients and their assignment to appropriate individualized cancer therapies. Topics also include the development of drug resistance, combinatorial therapies, and understanding the laboratory tests used to inform cancer therapy. Discussions about the ethical challenges raised by the use of genomic information to make personal care decisions is included in the course. Prerequisites: All four core courses or equivalent; 410.633 Introduction to Bioinformatics; 410.638 Cancer Biology is recommended.

    Technology Fee: $175.00

    410.712.81 - Advanced Practical Computer Concepts for Bioinformatics

    $4196

    Joshua Orvis

    Online 1/8 - 4/30

    This intermediate-to-advanced-level course, intended as a follow-on to 410.634 Practical Computer Concepts for Bioinformatics (a prerequisite for this new class), will integrate and expand on the concepts from that introductory class to allow students to create working, Web-based bioinformatics applications in a project-based course format. After a review of the concepts covered in 410.634, students will learn how to create functional Web applications on a UNIX system, using Python and CGI to create forms that can be acted upon, attach these to relational databases that they will create and populate to retrieve and present information. This will be demonstrated by building an in-class, instructor-led project. More advanced SQL concepts and database modeling will also be covered, as well as introductions to HTML5, CSS3 and Javascript/JQuery. Class time in the latter weeks of the class will be devoted to individual assistance on student projects as well as to short lectures on advanced topics. Once again, whenever possible, this course will emphasize relevance to solving problems in molecular biology and bioinformatics.

    Technology Fee: $175.00

    410.713.81 - Advanced Genomics and Genetics Analyses

    $4196

    Brandon Higgs

    Online 1/8 - 4/30

    The next generation of array and sequencing technologies provides the ability to investigate large quantities of genomics information with higher sensitivity, greater throughput, and lower costs. This also introduces new challenges in data management, novel algorithmic approaches, and general interpretation. This course builds on the topics in 410.671 Gene Expression Data Analysis and Visualization to address analysis of both genetic variation and genomics content including: splice variants, single nucleotide polymorphisms (SNPs) with family-based and case/control genome-wide association, copy number variation, somatic and germline single nucleotide variants, tumor clonality and ploidy estimates, and transcription factor binding sites. Data types will include array, RNA sequencing, and DNA sequencing (targeted and whole exome) with sequence assembly methods?presented?such as de novo and reference-based.? Prerequisites: Molecular Biology, Introduction to Bioinformatics, gene expression data analysis and visualization.

    Technology Fee: $175.00

    410.715.81 - Medical Device Regulation

    $4196

    David Locke

    Online 1/8 - 4/30

    This course provides a comprehensive introduction to medical devices and how they are regulated by the US Food and Drug Administration (FDA). Topics that will be covered include: (1) an overview of the laws and regulations that govern medical devices; (2) FDA's organizational structure and responsibilities for medical device regulation; and (3) administrative and legal requirements for medical devices throughout the full product life cycle. Particular focus will be placed on the premarket review, post-market programs enforcement (e.g., Quality System Regulation, and FDA inspectional programs). Included will be discussions on the responsible offices and major program requirements and resources. Students will be given various case studies to examine the application of regulations, as well as, participate in a 510(k)/PMA workshop, mock inspectional audit, and a mock enforcement action. Upon completion of this course, the student will have a working knowledge of the requirements and policies of FDA regulation of medical devices.

    Technology Fee: $175.00

    410.727.81 - Regulatory Strategies in Biopharmaceuticals

    $4196

    Bharat Khurana

    Online 1/8 - 4/30

    Given the costly drug development process and the limited resources of emerging biopharmaceutical companies, developing an early regulatory strategy- starting well before clinical trials are initiated, is extremely important for the success of a company. This course will discuss different regulatory strategies that several players of the U.S. biopharmaceutical industry have employed. Students will learn about interacting with regulatory agencies, the orphan drug development, accelerated approval, fast track, priority review, and other regulatory mechanisms, pharmacogenomics and biomarkers, adaptive clinical trials, animal rule, generic drug development and biosimilars. Using case studies, the impact of these regulatory strategies on drug development and how these strategies have helped many biopharmaceutical companies will be discussed. At the end of this course, students will better understand federal regulations and the aspects involved in developing efficient regulatory strategies.

    Technology Fee: $175.00

    410.732.81 - Funding a New Venture

    $4196

    Norman Marcus

    Online 1/8 - 4/30

    This course is designed to help students working for life sciences companies understand the fundamentals of obtaining government funding for product/technology research and development. While the emphasis will be on grant funding from the National Institutes of Health, other federal and state funding mechanisms will also be covered. Students will learn how to search for funding opportunities and receive an overview of the NIH funding mechanisms, as well as the background and history of the Small Business Innovation Research (SBIR) program. The course will provide insights on preparing an SBIR proposal and submission procedure. Fundamentals of government contracting law will also be covered.

    Technology Fee: $175.00

    410.753.81 - Stem Cell Biology

    $4196

    Melinda Maris

    Online 1/8 - 4/30

    This course will involve discussion and debate on current topics concerning stem cell biology and the use of stem cells in biotechnology and therapeutics. Topics will include review and discussion of developmental and cell biology, stem cell characteristics, stem cell preparation and therapeutic uses, tissue engineering, global regulatory and ethical issues, and commercialization of stem cell therapy. Current peer-reviewed literature and guest experts in the field will provide up-to-date information for discussion. Prerequisites: All four core courses.

    Technology Fee: $175.00

    410.753.82 - Stem Cell Biology

    $4196

    Melinda Maris

    Online 1/8 - 4/7

    This course will involve discussion and debate on current topics concerning stem cell biology and the use of stem cells in biotechnology and therapeutics. Topics will include review and discussion of developmental and cell biology, stem cell characteristics, stem cell preparation and therapeutic uses, tissue engineering, global regulatory and ethical issues, and commercialization of stem cell therapy. Current peer-reviewed literature and guest experts in the field will provide up-to-date information for discussion. Prerequisites: All four core courses.

    Technology Fee: $175.00

    410.799.81 - Current Topics in Regulatory Policy

    $4196

    Michael Marcarelli
    David Burrow

    Online 1/8 - 4/30

    The ability to successfully navigate the intersections of law, regulation, guidance, and policy has never been more critical to the success of entities engaged in the medical product development and commercial marketing. The entities that make up this industry are very sophisticated in their abilities to innovate at a blazing speed. In contrast, regulators must use a regulatory model that evolves and adapts much slower than their industry counterparts. As a result, regulators are relying more heavily on policy to drive their strategy, actions, and outcomes. Therefore, a clear understanding of regulatory policy is an essential consideration for individuals engaged in the medical product development industry. This course provides an introduction into several key areas of government regulatory policy (both old and new) and regulatory science. The topics covered in this course will serve as a road map for students who want to successfully navigate within this complex and changing regulatory model.

    Technology Fee: $175.00

    410.802.81 - Independent Studies in Regulatory Science

    $4196

    Thomas Colonna

    Online 1/8 - 4/30

    This course is open only to students in the MS in Regulatory Science program or the MS in Biotechnology with a concentration in Regulatory Affairs and may be taken only after the student has completed 5 courses and has compiled a strong academic record. Prior to proposing a project, interested students must have identified a study topic and a mentor who is familiar with their prospective inquiry and who is willing to provide guidance and oversee the project. The study project must be independent of current work-related responsibilities as determined by the project mentor. The mentor may be a faculty member, a supervisor from the student's place of work, or any expert with appropriate credentials. The goal of the study project should be a "publishable" article. Students are required to submit a formal proposal for review and approval by the regulatory science program committee. The proposal must be received by the Advanced Academic Programs office no later than one month prior to the beginning of the term in which the student wants to enroll in the course. Students must interact with a member of the program committee periodically for discussion of the project's progress, and a written document must be completed and approved by the program committee and project mentor for the student to receive graduate credit. Additional guidelines can be obtained from the AAP administrative office.

    Technology Fee: $175.00

    410.804.81 - Practicum in Biotechnology Enterprise & Entrepreneurship

    $4196

    Eric Langer

    Online 1/8 - 4/30

    This course synthesizes the knowledge and skills acquired in the Masters in Biotechnology Enterprise and Entrepreneurship program, while offering a real-world examination of a bioscience organization and the issues it faces. Students will form interdisciplinary teams and work with faculty and industry professionals on an authentic and current project from a local bioscience public or private company, an entrepreneurial startup, or a nonprofit organization. This course is only open to students completing the Masters in Biotechnology Enterprise and Entrepreneurship program.

    Technology Fee: $175.00